List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/305617/publications.pdf Version: 2024-02-01

	236833	206029
2,876	25	48
citations	h-index	g-index
		0.650
11/	11/	2652
docs citations	times ranked	citing authors
	citations 117	2,876 25 citations h-index 117 117

#	Article	IF	CITATIONS
1	Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis: an individual patient data meta-analysis. Lancet, The, 2018, 392, 821-834.	6.3	452
2	Effectiveness and safety of bedaquiline-containing regimens in the treatment of MDR- and XDR-TB: a multicentre study. European Respiratory Journal, 2017, 49, 1700387.	3.1	233
3	Worldwide Effects of Coronavirus Disease Pandemic on Tuberculosis Services, January–April 2020. Emerging Infectious Diseases, 2020, 26, 2709-2712.	2.0	133
4	Surveillance of adverse events in the treatment of drug-resistant tuberculosis: first global report. European Respiratory Journal, 2019, 54, 1901522.	3.1	113
5	Effectiveness and safety of meropenem/clavulanate-containing regimens in the treatment of MDR- and XDR-TB. European Respiratory Journal, 2016, 47, 1235-1243.	3.1	92
6	Comparison of different treatments for isoniazid-resistant tuberculosis: an individual patient data meta-analysis. Lancet Respiratory Medicine,the, 2018, 6, 265-275.	5.2	80
7	Clinical standards for the assessment, management and rehabilitation of post-TB lung disease. International Journal of Tuberculosis and Lung Disease, 2021, 25, 797-813.	0.6	78
8	Comparison of effectiveness and safety of imipenem/clavulanate-versusmeropenem/clavulanate-containing regimens in the treatment of MDR-ÂandÂXDR-TB. European Respiratory Journal, 2016, 47, 1758-1766.	3.1	69
9	Microevolution of <i>Mycobacterium tuberculosis</i> in a Tuberculosis Patient. Journal of Clinical Microbiology, 2010, 48, 3813-3816.	1.8	65
10	Incorporating therapeutic drug monitoring into the World Health Organization hierarchy of tuberculosis diagnostics. European Respiratory Journal, 2016, 47, 1867-1869.	3.1	59
11	Linezolid-based Regimens for Multidrug-resistant Tuberculosis (TB): A Systematic Review to Establish or Revise the Current Recommended Dose for TB Treatment. Clinical Infectious Diseases, 2018, 67, S327-S335.	2.9	53
12	The Cyclops for pulmonary delivery of aminoglycosides; a new member of the Twincerâ"¢ family. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 90, 8-15.	2.0	50
13	End TB with precision treatment!. European Respiratory Journal, 2016, 47, 680-682.	3.1	45
14	Surveillance of adverse events in the treatment of drug-resistant tuberculosis: A global feasibility study. International Journal of Infectious Diseases, 2019, 83, 72-76.	1.5	41
15	Pharmacokinetics of Bedaquiline in Cerebrospinal Fluid and Serum in Multidrug-Resistant Tuberculous Meningitis. Clinical Infectious Diseases, 2016, 62, civ921.	2.9	38
16	Systematic Review of Salivary Versus Blood Concentrations of Antituberculosis Drugs and Their Potential for Salivary Therapeutic Drug Monitoring. Therapeutic Drug Monitoring, 2018, 40, 17-37.	1.0	37
17	Simple strategy to assess linezolid exposure in patients with multi-drug-resistant and extensively-drug-resistant tuberculosis. International Journal of Antimicrobial Agents, 2017, 49, 688-694.	1.1	35
18	Effectiveness and Safety of Imipenem-Clavulanate Added to an Optimized Background Regimen (OBR) Versus OBR Control Regimens in the Treatment of Multidrug-Resistant and Extensively Drug-Resistant Tuberculosis. Clinical Infectious Diseases, 2016, 62, 1188.2-1190.	2.9	34

#	Article	IF	CITATIONS
19	The pharmacokinetics of antibiotics in cystic fibrosis. Expert Opinion on Drug Metabolism and Toxicology, 2021, 17, 53-68.	1.5	34
20	Clinical and economic impact of medication non-adherence in drug-susceptible tuberculosis: a systematic review. International Journal of Tuberculosis and Lung Disease, 2020, 24, 811-819.	0.6	31
21	Pharmacokinetics of ertapenem in patients with multidrug-resistant tuberculosis. European Respiratory Journal, 2016, 47, 1229-1234.	3.1	30
22	Outcome of treatment of MDR-TB or drug-resistant patients treated with bedaquiline and delamanid: Results from a large global cohort. Pulmonology, 2021, 27, 403-412.	1.0	30
23	High Prevalence of Infectious Diseases and Drug-Resistant Microorganisms in Asylum Seekers Admitted to Hospital; No Carbapenemase Producing Enterobacteriaceae until September 2015. PLoS ONE, 2016, 11, e0154791.	1.1	30
24	Determination of Bedaquiline in Human Serum Using Liquid Chromatography-Tandem Mass Spectrometry. Antimicrobial Agents and Chemotherapy, 2015, 59, 5675-5680.	1.4	28
25	Limited sampling strategies for therapeutic drug monitoring of amikacin and kanamycin in patients with multidrug-resistant tuberculosis. International Journal of Antimicrobial Agents, 2015, 46, 332-337.	1.1	28
26	Pharmacokinetic/pharmacodynamic-based optimization of levofloxacin administration in the treatment of MDR-TB. Journal of Antimicrobial Chemotherapy, 2016, 71, 2691-2703.	1.3	28
27	Optimization of Standard In-House 24-Locus Variable-Number Tandem-Repeat Typing for Mycobacterium tuberculosis and Its Direct Application to Clinical Material. Journal of Clinical Microbiology, 2014, 52, 1338-1342.	1.8	27
28	Drugs during pregnancy and breast feeding in women diagnosed with Cystic Fibrosis - An update. Journal of Cystic Fibrosis, 2018, 17, 17-25.	0.3	26
29	Amikacin Dosing for MDR Tuberculosis: A Systematic Review to Establish or Revise the Current Recommended Dose for Tuberculosis Treatment. Clinical Infectious Diseases, 2018, 67, S303-S307.	2.9	26
30	Evaluation of Carbapenems for Treatment of Multi- and Extensively Drug-Resistant <i>Mycobacterium tuberculosis</i> . Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	26
31	Tolerability and Pharmacokinetic Evaluation of Inhaled Dry Powder Tobramycin Free Base in Non-Cystic Fibrosis Bronchiectasis Patients. PLoS ONE, 2016, 11, e0149768.	1.1	25
32	Serum Biomarker Profile Including CCL1, CXCL10, VEGF, and Adenosine Deaminase Activity Distinguishes Active From Remotely Acquired Latent Tuberculosis. Frontiers in Immunology, 2021, 12, 725447.	2.2	25
33	Sensitivity and specificity of an electronic nose in diagnosing pulmonary tuberculosis among patients with suspected tuberculosis. PLoS ONE, 2019, 14, e0217963.	1.1	24
34	Drug concentration in lung tissue in multidrug-resistant tuberculosis. European Respiratory Journal, 2013, 42, 1750-1752.	3.1	23
35	<i>In Vitro</i> Susceptibility of Mycobacterium tuberculosis to Amikacin, Kanamycin, and Capreomycin. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	22
36	Clinical standards for the dosing and management of TB drugs. International Journal of Tuberculosis and Lung Disease, 2022, 26, 483-499.	0.6	22

#	Article	IF	CITATIONS
37	Role of therapeutic drug monitoring in pulmonary infections: use and potential for expanded use of dried blood spot samples. Bioanalysis, 2015, 7, 481-495.	0.6	21
38	Implementing tuberculosis entry screening for asylum seekers: the Groningen experience. European Respiratory Journal, 2016, 48, 261-264.	3.1	21
39	Treatment of multidrug-resistant tuberculosis using therapeutic drug monitoring: first experiences with sub-300â€mg linezolid dosages using in-house made capsules. European Respiratory Journal, 2019, 54, 1900580.	3.1	21
40	Evaluation of macrolides for possible use against multidrug-resistant <i>Mycobacterium tuberculosis</i> . European Respiratory Journal, 2015, 46, 444-455.	3.1	20
41	The role of therapeutic drug monitoring in individualised drug dosage and exposure measurement in tuberculosis and HIV co-infection. European Respiratory Journal, 2015, 45, 569-571.	3.1	20
42	Pharmacokinetics of moxifloxacin and linezolid during and after pregnancy in a patient with multidrug-resistant tuberculosis. European Respiratory Journal, 2017, 49, 1601724.	3.1	20
43	Treatment outcomes of drug-resistant tuberculosis in the Netherlands, 2005–2015. Antimicrobial Resistance and Infection Control, 2019, 8, 115.	1.5	20
44	Rehabilitation, optimized nutritional care, and boosting host internal milieu to improve long-term treatment outcomes in tuberculosis patients. International Journal of Infectious Diseases, 2020, 92, S10-S14.	1.5	20
45	Comparison of 14 Molecular Assays for Detection of Mycobacterium tuberculosis Complex in Bronchoalveolar Lavage Fluid. Journal of Clinical Microbiology, 2013, 51, 3505-3511.	1.8	19
46	Bedaquiline as part of combination therapy in adults with pulmonary multi-drug resistant tuberculosis. Expert Review of Clinical Pharmacology, 2016, 9, 1025-1037.	1.3	19
47	Individualizing management of extensively drug-resistant tuberculosis: diagnostics, treatment, and biomarkers. Expert Review of Anti-Infective Therapy, 2017, 15, 11-21.	2.0	19
48	Limited Sampling Strategies Using Linear Regression and the Bayesian Approach for Therapeutic Drug Monitoring of Moxifloxacin in Tuberculosis Patients. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	19
49	Tuberculosis-Related Malnutrition: Public Health Implications. Journal of Infectious Diseases, 2019, 220, 340-341.	1.9	19
50	Delamanid-containing regimens and multidrug-resistant tuberculosis: A systematic review and meta-analysis. International Journal of Infectious Diseases, 2022, 124, S90-S103.	1.5	18
51	Mass spectrometry for therapeutic drug monitoring of anti-tuberculosis drugs. Clinical Mass Spectrometry, 2019, 14, 34-45.	1.9	17
52	Safety and tolerability of clarithromycin in the treatment of multidrug-resistant tuberculosis. European Respiratory Journal, 2017, 49, 1601612.	3.1	16
53	Performance of a web-based application measuring spot quality in dried blood spot sampling. Clinical Chemistry and Laboratory Medicine, 2019, 57, 1846-1853.	1.4	14
54	Predictors for treatment outcomes among patients with drug-susceptible tuberculosis in the Netherlands: a retrospective cohort study. Clinical Microbiology and Infection, 2019, 25, 761.e1-761.e7.	2.8	14

#	Article	IF	CITATIONS
55	Precision and personalized medicine and anti-TB treatment: Is TDM feasible for programmatic use?. International Journal of Infectious Diseases, 2020, 92, S5-S9.	1.5	13
56	Evaluation of whole-genome sequence data analysis approaches for short- and long-read sequencing of Mycobacterium tuberculosis. Microbial Genomics, 2021, 7, .	1.0	13
57	Pharmacokinetic Evaluation of Sulfamethoxazole at 800 Milligrams Once Daily in the Treatment of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2016, 60, 3942-3947.	1.4	12
58	Membrane Filtration Is Suitable for Reliable Elimination of Mycobacterium tuberculosis from Saliva for Therapeutic Drug Monitoring. Journal of Clinical Microbiology, 2017, 55, 3292-3293.	1.8	12
59	Therapeutic drug monitoring using saliva as matrix: an opportunity for linezolid, but challenge for moxifloxacin. European Respiratory Journal, 2020, 55, 1901903.	3.1	12
60	Individualized treatment of multidrug-resistant tuberculosis using therapeutic drug monitoring. International Journal of Mycobacteriology, 2016, 5, S44-S45.	0.3	11
61	Nationwide analysis of treatment outcomes in children and adolescents routinely treated for tuberculosis in the Netherlands. European Respiratory Journal, 2019, 54, 1901402.	3.1	11
62	Should we worry about bedaquiline exposure in the treatment of multidrug-resistant and extensively drug-resistant tuberculosis?. European Respiratory Journal, 2020, 55, 1901908.	3.1	11
63	Colistin dry powder inhalation with the Twincerâ,,¢: An effective and more patient friendly alternative to nebulization. PLoS ONE, 2020, 15, e0239658.	1.1	11
64	Practices of therapeutic drug monitoring in tuberculosis: an international survey. European Respiratory Journal, 2022, 59, 2102787.	3.1	11
65	Pharmacokinetic Modeling and Limited Sampling Strategies Based on Healthy Volunteers for Monitoring of Ertapenem in Patients with Multidrug-Resistant Tuberculosis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	10
66	Role of Therapeutic Drug Monitoring in Treatment Optimization in Tuberculosis and Diabetes Mellitus Comorbidity. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	10
67	Shorter treatment for multidrug-resistant tuberculosis: the good, the bad and the ugly. European Respiratory Journal, 2016, 48, 1800-1802.	3.1	9
68	Lack of penetration of amikacin into saliva of tuberculosis patients. European Respiratory Journal, 2018, 51, 1702024.	3.1	9
69	Model-Informed Precision Dosing of Linezolid in Patients with Drug-Resistant Tuberculosis. Pharmaceutics, 2022, 14, 753.	2.0	9
70	Dosage of isoniazid and rifampicin poorly predicts drug exposure in tuberculosis patients. European Respiratory Journal, 2016, 48, 1237-1239.	3.1	8
71	Dried blood spots can help decrease the burden on patients dually infected with multidrug-resistant tuberculosis and HIV. European Respiratory Journal, 2016, 48, 932-934.	3.1	8
72	Neurological and functional recovery inÂtuberculosis patients with spinal cordÂinjury in The Netherlands. NeuroRehabilitation, 2017, 40, 439-445.	0.5	8

#	Article	IF	CITATIONS
73	Pharmacokinetics of 2,000 Milligram Ertapenem in Tuberculosis Patients. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	8
74	Dose optimisation of first-line tuberculosis drugs using therapeutic drug monitoring in saliva: feasible for rifampicin, not for isoniazid. European Respiratory Journal, 2020, 56, 2000803.	3.1	8
75	Eradication of Pseudomonas aeruginosa in cystic fibrosis patients with inhalation of dry powder tobramycin. Therapeutic Advances in Respiratory Disease, 2020, 14, 175346662090527.	1.0	8
76	Adequate Design of Pharmacokinetic-Pharmacodynamic Studies Will Help Optimize Tuberculosis Treatment for the Future. Antimicrobial Agents and Chemotherapy, 2015, 59, 2474-2474.	1.4	7
77	Statin Adjunctive Therapy for Tuberculosis Treatment. Antimicrobial Agents and Chemotherapy, 2016, 60, 7004-7004.	1.4	7
78	Cross border, highly individualised treatment of a patient with challenging extensively drug-resistant tuberculosis. European Respiratory Journal, 2018, 51, 1702490.	3.1	7
79	Reduced moxifloxacin exposure in patients with tuberculosis and diabetes. European Respiratory Journal, 2019, 54, 1900373.	3.1	7
80	Clinical standards for drug-susceptible pulmonary TB. International Journal of Tuberculosis and Lung Disease, 2022, 26, 592-604.	0.6	6
81	Breakpoints and Drug Exposure Are Inevitably Closely Linked. Antimicrobial Agents and Chemotherapy, 2015, 59, 1384-1384.	1.4	5
82	Fixed-dose combination and therapeutic drug monitoring in tuberculosis: friend or foe?. European Respiratory Journal, 2016, 48, 1230-1233.	3.1	5
83	Variability and cost implications of three generations of the Roche LightCycler® 480. PLoS ONE, 2018, 13, e0190847.	1.1	5
84	Different Underlying Mechanism Might Explain the Absence of a Significant Difference in Area Under the Concentration–Time Curve of Linezolid for Different ABCB1 Genotypes. Therapeutic Drug Monitoring, 2019, 41, 253-254.	1.0	5
85	Patients and Medical Staff Attitudes Toward the Future Inclusion of eHealth in Tuberculosis Management: Perspectives From Six Countries Evaluated using a Qualitative Framework. JMIR MHealth and UHealth, 2020, 8, e18156.	1.8	5
86	Population Pharmacokinetic Modelling and Limited Sampling Strategies for Therapeutic Drug Monitoring of Pyrazinamide in Patients with Tuberculosis. Antimicrobial Agents and Chemotherapy, 2022, 66, .	1.4	5
87	Mycobacterium bovis infection in a young Dutch adult: transmission from an elderly human source?. Medical Microbiology and Immunology, 2012, 201, 397-400.	2.6	4
88	Strategy To Limit Sampling of Antituberculosis Drugs Instead of Determining Concentrations at Two Hours Postingestion in Relation to Treatment Response. Antimicrobial Agents and Chemotherapy, 2014, 58, 628-628.	1.4	4
89	Multidrug-Resistant Tuberculosis Complicated by Nosocomial Infection with Multidrug-Resistant Enterobacteriaceae. American Journal of Tropical Medicine and Hygiene, 2016, 94, 517-518.	0.6	4
90	Impact of radiographic screening of >34 000 asylum seeker children. European Respiratory Journal, 2019, 54, 1900579.	3.1	4

#	Article	IF	CITATIONS
91	Prospective evaluation of improving fluoroquinolone exposure using centralised therapeutic drug monitoring (TDM) in patients with tuberculosis (PERFECT): a study protocol of a prospective multicentre cohort study. BMJ Open, 2020, 10, e035350.	0.8	4
92	Corticosteroid therapy for the management of paradoxical inflammatory reaction in patients with pulmonary tuberculosis. Infection, 2020, 48, 641-645.	2.3	4
93	Clinical Relevance of Rifampicinâ€Moxifloxacin Interaction in Isoniazid-Resistant/Intolerant Tuberculosis Patients. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0182921.	1.4	4
94	Malnutrition assessment methods in adult patients with tuberculosis: a systematic review. BMJ Open, 2021, 11, e049777.	0.8	4
95	Raltegravir and rifampicin in patients with HIV and tuberculosis. Lancet Infectious Diseases, The, 2014, 14, 1046-1047.	4.6	3
96	Therapeutic drug monitoring of first-line anti-tuberculosis drugs comprises more than C _{2h} measurements. International Journal of Tuberculosis and Lung Disease, 2016, 20, 1695-1696.	0.6	3
97	Towards elimination of childhood and adolescent tuberculosis in the Netherlands: an epidemiological time-series analysis of national surveillance data. European Respiratory Journal, 2020, 56, 2001086.	3.1	3
98	The long-term safety of chronic azithromycin use in adult patients with cystic fibrosis, evaluating biomarkers for renal function, hepatic function and electrical properties of the heart. Expert Opinion on Drug Safety, 2021, 20, 959-963.	1.0	3
99	Optimising tuberculosis care for refugees affected by armed conflicts. Lancet Respiratory Medicine,the, 2022, 10, 533-536.	5.2	3
100	Country-specific approaches to latent tuberculosis screening targeting migrants in EU/EEA* countries: A survey of national experts, September 2019 to February 2020. Eurosurveillance, 2022, 27, .	3.9	3
101	Hope rises out of despair: bedaquiline and linezolid for the treatment of drug-resistant TB. International Journal of Tuberculosis and Lung Disease, 2020, 24, 987-988.	0.6	2
102	The importance of knowing why TB patients stop anti-TB treatment. International Journal of Tuberculosis and Lung Disease, 2020, 24, 989-990.	0.6	2
103	Assessment of TB treatment on patient well-being. International Journal of Tuberculosis and Lung Disease, 2021, 25, 315-317.	0.6	2
104	Shortening MDR-TB treatment: is treating more patients with fewer drugs better?. International Journal of Tuberculosis and Lung Disease, 2021, 25, 419-420.	0.6	2
105	The case for expanding worldwide access to point of care molecular drug susceptibility testing for isoniazid. Clinical Microbiology and Infection, 2022, 28, 1047-1049.	2.8	2
106	Comment on: The potential use of rifabutin for treatment of patients diagnosed with rifampicin-resistant tuberculosis. Journal of Antimicrobial Chemotherapy, 2019, 74, 834-834.	1.3	1
107	Recurrent fever 3 years postâ€lung transplantation: A treacherous case of <i>Mycobacterium genavense</i> . Transplant Infectious Disease, 2021, 23, e13741.	0.7	1
108	Case Report: Carbapenemase-Producing Enterobacteriaceae in an Asylum Seeker with Multidrug–Resistant Tuberculosis. American Journal of Tropical Medicine and Hygiene, 2018, 98, 376-378.	0.6	1

#	Article	IF	CITATIONS
109	Monitoring during and after tuberculosis treatment. , 0, , 308-325.		1
110	The Never Ending Struggle Against Development of Drug Resistance. Clinical Infectious Diseases, 2015, 61, 137-138.	2.9	0
111	Reply to Verhaeghe et al: Table 1 Clinical Infectious Diseases, 2016, 63, 146-147.	2.9	Ο
112	Tuberculosis Patient-Centred Care. , 2021, , 177-183.		0