Josée Dostie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3056108/publications.pdf

Version: 2024-02-01

109321 189892 8,332 53 35 50 citations h-index g-index papers 56 56 56 11649 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Chromosome Conformation Capture Carbon Copy (5C): A massively parallel solution for mapping interactions between genomic elements. Genome Research, 2006, 16, 1299-1309.	5.5	1,026
2	miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes and Development, 2002, 16, 720-728.	5.9	926
3	Complex multi-enhancer contacts captured by genome architecture mapping. Nature, 2017, 543, 519-524.	27.8	562
4	Complexity of chromatin folding is captured by the strings and binders switch model. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16173-16178.	7.1	493
5	Wholeâ€genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature, 2015, 526, 112-117.	27.8	483
6	The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nature Genetics, 2009, 41, 553-562.	21.4	408
7	Gene expression during acute and prolonged hypoxia is regulated by distinct mechanisms of translational control. EMBO Journal, 2006, 25, 1114-1125.	7.8	328
8	Numerous microRNPs in neuronal cells containing novel microRNAs. Rna, 2003, 9, 180-186.	3.5	321
9	Hierarchical folding and reorganization of chromosomes are linked to transcriptional changesÂin cellular differentiation. Molecular Systems Biology, 2015, 11, 852.	7.2	305
10	Spatial genome organization: contrasting views from chromosome conformation capture and fluorescence in situ hybridization. Genes and Development, 2014, 28, 2778-2791.	5.9	230
11	eIF4A3 is a novel component of the exon junction complex. Rna, 2004, 10, 200-209.	3.5	215
12	A role for the eIF4E-binding protein 4E-T in P-body formation and mRNA decay. Journal of Cell Biology, 2005, 170, 913-924.	5.2	210
13	Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing. Genome Medicine, 2015, 7, 93.	8.2	199
14	Suppression of cap-dependent translation in mitosis. Genes and Development, 2001, 15, 2083-2093.	5.9	192
15	Translation Is Required to Remove Y14 from mRNAs in the Cytoplasm. Current Biology, 2002, 12, 1060-1067.	3.9	191
16	An Overview of Genome Organization and How We Got There: from FISH to Hi-C. Microbiology and Molecular Biology Reviews, 2015, 79, 347-372.	6.6	190
17	Mapping networks of physical interactions between genomic elements using 5C technology. Nature Protocols, 2007, 2, 988-1002.	12.0	180
18	Clustering of Tissue-Specific Sub-TADs Accompanies the Regulation of HoxA Genes in Developing Limbs. PLoS Genetics, 2013, 9, e1004018.	3.5	164

#	Article	IF	CITATIONS
19	Three-dimensional modeling of chromatin structure from interaction frequency data using Markov chain Monte Carlo sampling. BMC Bioinformatics, 2011, 12, 414.	2.6	151
20	The three-dimensional architecture of Hox cluster silencing. Nucleic Acids Research, 2010, 38, 7472-7484.	14.5	126
21	SMARCA4 loss is synthetic lethal with CDK4/6 inhibition in non-small cell lung cancer. Nature Communications, 2019, 10, 557.	12.8	125
22	Nuclear Eukaryotic Initiation Factor 4e (Eif4e) Colocalizes with Splicing Factors in Speckles. Journal of Cell Biology, 2000, 148, 239-246.	5.2	119
23	Repurposing CRISPR/Cas9 for in situ functional assays. Genes and Development, 2013, 27, 2602-2614.	5.9	110
24	Functional annotation of human long noncoding RNAs via molecular phenotyping. Genome Research, 2020, 30, 1060-1072.	5.5	109
25	Chromatin conformation signatures of cellular differentiation. Genome Biology, 2009, 10, R37.	9.6	108
26	Protospacer Adjacent Motif (PAM)-Distal Sequences Engage CRISPR Cas9 DNA Target Cleavage. PLoS ONE, 2014, 9, e109213.	2.5	94
27	Disease-Causing 7.4 kb Cis-Regulatory Deletion Disrupting Conserved Non-Coding Sequences and Their Interaction with the FOXL2 Promotor: Implications for Mutation Screening. PLoS Genetics, 2009, 5, e1000522.	3.5	83
28	CDK4/6 inhibitors target SMARCA4-determined cyclin D1 deficiency in hypercalcemic small cell carcinoma of the ovary. Nature Communications, 2019, 10, 558.	12.8	76
29	Reciprocal regulation of chromatin state and architecture byHOTAIRM1contributes to temporal collinearHOXAgene activation. Nucleic Acids Research, 2016, 45, gkw966.	14.5	56
30	Chromosome organization in the nucleus – charting new territory across the Hi-Cs. Current Opinion in Genetics and Development, 2012, 22, 125-131.	3.3	52
31	PAM multiplicity marks genomic target sites as inhibitory to CRISPR-Cas9 editing. Nature Communications, 2015, 6, 10124.	12.8	52
32	Shaping the Genome with Non-Coding RNAs. Current Genomics, 2011, 12, 307-321.	1.6	45
33	Hox in motion: tracking HoxA cluster conformation during differentiation. Nucleic Acids Research, 2014, 42, 1524-1540.	14.5	45
34	From cells to chromatin: Capturing snapshots of genome organization with 5C technology. Methods, 2012, 58, 255-267.	3.8	42
35	Chromosome Conformation Capture Carbon Copy Technology. Current Protocols in Molecular Biology, 2007, 80, Unit 21.14.	2.9	39
36	Chromatin conformation signatures: ideal human disease biomarkers?. Biomarkers in Medicine, 2010, 4, 611-629.	1.4	39

#	Article	IF	CITATIONS
37	Discovering genome regulation with 3C and 3C-related technologies. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 401-410.	1.9	34
38	Classifying leukemia types with chromatin conformation data. Genome Biology, 2014, 15, R60.	9.6	32
39	PRC2-Associated Chromatin Contacts in the Developing Limb Reveal a Possible Mechanism for the Atypical Role of PRC2 in HoxA Gene Expression. Developmental Cell, 2019, 50, 184-196.e4.	7.0	30
40	Computing Chromosome Conformation. Methods in Molecular Biology, 2010, 674, 251-268.	0.9	24
41	HIFI: estimating DNA-DNA interaction frequency from Hi-C data at restriction-fragment resolution. Genome Biology, 2020, 21, 11.	8.8	24
42	A Torrent of Data: Mapping Chromatin Organization Using 5C and High-Throughput Sequencing. Methods in Enzymology, 2012, 513, 113-141.	1.0	23
43	Analysis of long-range interactions in primary human cells identifies cooperative <i>CFTR </i> regulatory elements. Nucleic Acids Research, 2016, 44, 2564-2576.	14.5	19
44	Double-Stranded Biotinylated Donor Enhances Homology-Directed Repair in Combination with Cas9 Monoavidin in Mammalian Cells. CRISPR Journal, 2018, 1, 414-430.	2.9	12
45	Chromosome folding and its regulation in health and disease. Current Opinion in Genetics and Development, 2017, 43, 23-30.	3.3	9
46	Spatial Organization of Epigenomes. Current Molecular Biology Reports, 2016, 2, 1-9.	1.6	4
47	2C-ChIP: measuring chromatin immunoprecipitation signal from defined genomic regions with deep sequencing. BMC Genomics, 2019, 20, 162.	2.8	4
48	Novel long-range regulatory mechanisms controlling PKD2 gene expression. BMC Genomics, 2018, 19, 515.	2.8	3
49	LAMPS: an analysis pipeline for sequence-specific ligation-mediated amplification reads. BMC Research Notes, 2020, 13, 273.	1.4	3
50	3D genome mapping and analysis methods. Methods, 2018, 142, 1-2.	3.8	2
51	Mapping and Visualizing Spatial Genome Organization. , 2016, , 359-383.		0
52	PRC2-Dependent Tissue-Specific 3D Architecture in the Developing Limb Reveals a Possible Mechanism for the Atypical Role of PRC2 in Gene Activation. SSRN Electronic Journal, 0, , .	0.4	0
53	Profiling Chromatin Landscape at High Resolution and Throughput with 2C-ChIP. Methods in Molecular Biology, 2021, 2157, 127-157.	0.9	0