
Clive Bate

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3055171/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	GPI-anchor signal sequence influences PrPC sorting, shedding and signalling, and impacts on different pathomechanistic aspects of prion disease in mice. PLoS Pathogens, 2019, 15, e1007520.	4.7	34
2	Cholesterol ester hydrolase inhibitors reduce the production of synaptotoxic amyloid-β oligomers. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 649-659.	3.8	6
3	Monomeric amyloid-β reduced amyloid-β oligomer-induced synapse damage in neuronal cultures. Neurobiology of Disease, 2018, 111, 48-58.	4.4	20
4	The phospholipase A2 pathway controls a synaptic cholesterol ester cycle and synapse damage. Journal of Cell Science, 2018, 131, .	2.0	4
5	Valproic acid and its congener propylisopropylacetic acid reduced the amount of soluble amyloid-β oligomers released from 7PA2 cells. Neuropharmacology, 2018, 128, 54-62.	4.1	8
6	Sialylated glycosylphosphatidylinositols suppress the production of toxic amyloid-β oligomers. Biochemical Journal, 2017, 474, 3045-3058.	3.7	3
7	The cholesterol ester cycle regulates signalling complexes and synapse damage caused by amyloid-β. Journal of Cell Science, 2017, 130, 3050-3059.	2.0	8
8	Breaking the Cycle, Cholesterol Cycling, and Synapse Damage in Response to Amyloid-β. Journal of Experimental Neuroscience, 2017, 11, 117906951773309.	2.3	3
9	Can we switch production of toxic Al ² oligomers to neuroprotective Al ² monomers to allow synapse regeneration?. Neural Regeneration Research, 2017, 12, 1437.	3.0	1
10	Glycosylphosphatidylinositols: More than just an anchor?. Communicative and Integrative Biology, 2016, 9, e1149671.	1.4	3
11	Sialic Acid within the Glycosylphosphatidylinositol Anchor Targets the Cellular Prion Protein to Synapses. Journal of Biological Chemistry, 2016, 291, 17093-17101.	3.4	17
12	Does the tail wag the dog? How the structure of a glycosylphosphatidylinositol anchor affects prion formation. Prion, 2016, 10, 127-130.	1.8	5
13	Sialic Acid on the Glycosylphosphatidylinositol Anchor Regulates PrP-mediated Cell Signaling and Prion Formation. Journal of Biological Chemistry, 2016, 291, 160-170.	3.4	35
14	Glimepiride protects neurons against amyloid-Î ² -induced synapse damage. Neuropharmacology, 2016, 101, 225-236.	4.1	37
15	An inÂvitro model for synaptic loss in neurodegenerative diseases suggests a neuroprotective role for valproic acid via inhibition of cPLA2 dependent signalling. Neuropharmacology, 2016, 101, 566-575.	4.1	22
16	Monoacylated Cellular Prion Proteins Reduce Amyloid-β-Induced Activation of Cytoplasmic Phospholipase A2 and Synapse Damage. Biology, 2015, 4, 367-382.	2.8	5
17	cAMP-Inhibits Cytoplasmic Phospholipase A2 and Protects Neurons against Amyloid-Î ² -Induced Synapse Damage. Biology, 2015, 4, 591-606.	2.8	17
18	α-Synuclein-Induced Synapse Damage in Cultured Neurons Is Mediated by Cholesterol-Sensitive Activation of Cytoplasmic Phospholipase A2. Biomolecules, 2015, 5, 178-193.	4.0	25

CLIVE BATE

#	Article	IF	CITATIONS
19	Enhanced neuronal degradation of amyloid-β oligomers allows synapse regeneration. Neural Regeneration Research, 2015, 10, 700.	3.0	1
20	Platelet-activating factor antagonists enhance intracellular degradation of amyloid-β42 in neurons via regulation of cholesterol ester hydrolases. Alzheimer's Research and Therapy, 2014, 6, 15.	6.2	13
21	Glimepiride reduces CD14 expression and cytokine secretion from macrophages. Journal of Neuroinflammation, 2014, 11, 115.	7.2	25
22	Neurodegeneration Induced by Clustering of Sialylated Clycosylphosphatidylinositols of Prion Proteins. Journal of Biological Chemistry, 2012, 287, 7935-7944.	3.4	30
23	Clustering of sialylated glycosylphosphatidylinositol anchors mediates PrP-induced activation of cytoplasmic phospholipase A2and synapse damage. Prion, 2012, 6, 350-353.	1.8	6
24	The N-Methylated Peptide SEN304 Powerfully Inhibits Aβ(1–42) Toxicity by Perturbing Oligomer Formation. Biochemistry, 2012, 51, 8338-8352.	2.5	61
25	Inhibition of phospholipase A2 increased the removal of the prion derived peptide PrP82-146 from cultured neurons. Neuropharmacology, 2011, 60, 365-372.	4.1	6
26	Ethanol protects cultured neurons against amyloid-β and α-synuclein-induced synapse damage. Neuropharmacology, 2011, 61, 1406-1412.	4.1	29
27	Monoacylated Cellular Prion Protein Modifies Cell Membranes, Inhibits Cell Signaling, and Reduces Prion Formation. Journal of Biological Chemistry, 2011, 286, 8752-8758.	3.4	20
28	The cellular prion protein with a monoacylated glycosylphosphatidylinositol anchor modifies cell membranes, inhibits cell signaling and reduces prion formation. Prion, 2011, 5, 65-68.	1.8	5
29	Amyloid-β-induced Synapse Damage Is Mediated via Cross-linkage of Cellular Prion Proteins. Journal of Biological Chemistry, 2011, 286, 37955-37963.	3.4	82
30	The glycosylphosphatidylinositol anchor is a major determinant of prion binding and replication. Biochemical Journal, 2010, 428, 95-101.	3.7	23
31	Polyunsaturated Fatty Acids Protect Against Prion-Mediated Synapse Damage InÂVitro. Neurotoxicity Research, 2010, 17, 203-214.	2.7	13
32	Phospholipase A2 inhibitors protect against prion and AÎ ² mediated synapse degeneration. Molecular Neurodegeneration, 2010, 5, 13.	10.8	36
33	α-synuclein induced synapse damage is enhanced by amyloid-β1-42. Molecular Neurodegeneration, 2010, 5, 55.	10.8	43
34	A Camelid Anti-PrP Antibody Abrogates PrPSc Replication in Prion-Permissive Neuroblastoma Cell Lines. PLoS ONE, 2010, 5, e9804.	2.5	31
35	PrP-specific camel antibodies with the ability to immunodetect intracellular prion protein. Journal of General Virology, 2010, 91, 2121-2131.	2.9	2
36	Epitope-specific anti-prion antibodies upregulate apolipoprotein E and disrupt membrane cholesterol homeostasis. Journal of General Virology, 2010, 91, 3105-3115.	2.9	7

CLIVE BATE

#	Article	IF	CITATIONS
37	Glycosylphosphatidylinositol Anchor Analogues Sequester Cholesterol and Reduce Prion Formation. Journal of Biological Chemistry, 2010, 285, 22017-22026.	3.4	12
38	Amyloid-β1–40 Inhibits Amyloid-β1–42 Induced Activation of Cytoplasmic Phospholipase A2 and Synapse Degeneration. Journal of Alzheimer's Disease, 2010, 21, 985-993.	2.6	19
39	A glycosylphosphatidylinositol analogue reduced prion-derived peptide mediated activation of cytoplasmic phospholipase A2, synapse degeneration and neuronal death. Neuropharmacology, 2010, 59, 93-99.	4.1	9
40	Glimepiride Reduces the Expression of PrPC, Prevents PrPSc Formation and Protects against Prion Mediated Neurotoxicity. PLoS ONE, 2009, 4, e8221.	2.5	24
41	Sequestration of free cholesterol in cell membranes by prions correlates with cytoplasmic phospholipase A2activation. BMC Biology, 2008, 6, 8.	3.8	27
42	Ginkgolides protect against amyloid-β1–42-mediated synapse damage in vitro. Molecular Neurodegeneration, 2008, 3, 1.	10.8	79
43	Docosahexaenoic and eicosapentaenoic acids increase neuronal death in response to HuPrP82–146 and Aî²1–42. Neuropharmacology, 2008, 54, 934-943.	4.1	22
44	Cholesterol esterification reduces the neurotoxicity of prions. Neuropharmacology, 2008, 54, 1247-1253.	4.1	9
45	Docosahexaenoic and eicosapentaenoic acids increase prion formation in neuronal cells. BMC Biology, 2008, 6, 39.	3.8	13
46	Do prion-induced changes in membrane cholesterol trigger neurodegeneration?. Future Neurology, 2008, 3, 367-370.	0.5	1
47	A role for B lymphocytes in anti-infective prion therapies?. Expert Review of Anti-Infective Therapy, 2007, 5, 631-638.	4.4	2
48	Simvastatin treatment prolongs the survival of scrapie-infected mice. NeuroReport, 2007, 18, 479-482.	1.2	49
49	Squalestatin protects neurons and reduces the activation of cytoplasmic phospholipase A2 by Aβ1–42. Neuropharmacology, 2007, 53, 222-231.	4.1	45
50	Cholesterol synthesis inhibitors protect against platelet-activating factor-induced neuronal damage. Journal of Neuroinflammation, 2007, 4, 5.	7.2	17
51	Squalestatin alters the intracellular trafficking of a neurotoxic prion peptide. BMC Neuroscience, 2007, 8, 99.	1.9	12
52	Interferon-gamma increases neuronal death in response to amyloid-beta1-42. Journal of Neuroinflammation, 2006, 3, 7.	7.2	55
53	Prostaglandin D2 mediates neuronal damage by amyloid-Î ² or prions which activates microglial cells. Neuropharmacology, 2006, 50, 229-237.	4.1	35
54	Platelet-activating factor antagonists protect amyloid-β damaged neurons from microglia-mediated death. Neuropharmacology, 2006, 51, 173-181.	4.1	28

CLIVE BATE

#	ARTICLE	IF	CITATIONS
55	Microglial cells kill prion-damaged neurons in vitro by a CD14 dependent process. Journal of Neuroimmunology, 2005, 170, 62-70.	2.3	13
56	Phospholipase A2 Inhibitors or Platelet-activating Factor Antagonists Prevent Prion Replication. Journal of Biological Chemistry, 2004, 279, 36405-36411.	3.4	41
57	Role of glycosylphosphatidylinositols in the activation of phospholipase A2 and the neurotoxicity of prions. Journal of General Virology, 2004, 85, 3797-3804.	2.9	18
58	Squalestatin Cures Prion-infected Neurons and Protects Against Prion Neurotoxicity. Journal of Biological Chemistry, 2004, 279, 14983-14990.	3.4	124
59	Manipulation of PrPres production in scrapie-infected neuroblastoma cells. Journal of Neuroscience Methods, 2004, 138, 217-223.	2.5	18
60	Ginkgolide B inhibits the neurotoxicity of prions or amyloid-beta1-42. Journal of Neuroinflammation, 2004, 1, 4.	7.2	73
61	Microglia kill amyloid-β1-42 damaged neurons by a CD14-dependent process. NeuroReport, 2004, 15, 1427-1430.	1.2	37
62	The role of platelet activating factor in prion and amyloid-β neurotoxicity. NeuroReport, 2004, 15, 509-513.	1.2	39
63	Detoxified lipopolysaccharide reduces microglial cell killing of prion-infected neurons. NeuroReport, 2004, 15, 2765-8.	1.2	4
64	Neurones treated with cyclo-oxygenase-1 inhibitors are resistant to amyloid-β1-42. NeuroReport, 2003, 14, 2099-2103.	1.2	24
65	Temporal and spatial relationship between the death of PrP-damaged neurones and microglial activation. NeuroReport, 2002, 13, 1695-1700.	1.2	29
66	Cyclo-oxygenase inhibitors protect against prion-induced neurotoxicity in vitro. NeuroReport, 2002, 13, 1933-1938.	1.2	32
67	Killing of prion-damaged neurones by microglia. NeuroReport, 2001, 12, 2589-2594.	1.2	43