List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3055160/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lockdown for CoViD-2019 in Milan: What are the effects on air quality?. Science of the Total Environment, 2020, 732, 139280.	3.9	438
2	Treatments for color removal from wastewater: State of the art. Journal of Environmental Management, 2019, 236, 727-745.	3.8	225
3	Legislation for the Reuse of Biosolids on Agricultural Land in Europe: Overview. Sustainability, 2019, 11, 6015.	1.6	159
4	Overview of the Main Disinfection Processes for Wastewater and Drinking Water Treatment Plants. Sustainability, 2018, 10, 86.	1.6	156
5	Is anaerobic digestion effective for the removal of organic micropollutants and biological activities from sewage sludge?. Water Research, 2016, 102, 211-220.	5.3	140
6	Biosolids: What are the different types of reuse?. Journal of Cleaner Production, 2019, 238, 117844.	4.6	117
7	SARS-CoV-2 in sewer systems and connected facilities. Chemical Engineering Research and Design, 2020, 143, 196-203.	2.7	75
8	What Advanced Treatments Can Be Used to Minimize the Production of Sewage Sludge in WWTPs?. Applied Sciences (Switzerland), 2019, 9, 2650.	1.3	74
9	Recovery of MSWI and soil washing residues as concrete aggregates. Waste Management, 2011, 31, 289-297.	3.7	71
10	Removal of non-ionic and anionic surfactants from real laundry wastewater by means of a full-scale treatment system. Chemical Engineering Research and Design, 2019, 132, 105-115.	2.7	55
11	The Production of Sustainable Concrete with the Use of Alternative Aggregates: A Review. Sustainability, 2020, 12, 7903.	1.6	55
12	EDCs, estrogenicity and genotoxicity reduction in a mixed (domestic + textile) secondary effluent by means of ozonation: A full-scale experience. Science of the Total Environment, 2013, 458-460, 160-168.	3.9	54
13	Decolorization and biodegradability of a real pharmaceutical wastewater treated by H2O2-assisted photoelectrocatalysis on TiO2 meshes. Journal of Hazardous Materials, 2020, 387, 121668.	6.5	53
14	On the reliability of reusing bottom ash from municipal solid waste incineration as aggregate in concrete. Composites Part B: Engineering, 2014, 58, 502-509.	5.9	45
15	H2O2 Based Oxidation Processes for the Treatment of Real High Strength Aqueous Wastes. Sustainability, 2017, 9, 244.	1.6	44
16	Electrolytic Recovery of Nickel and Copper from Acid Pickling Solutions Used to Treat Metal Surfaces. Water, Air, and Soil Pollution, 2019, 230, 1.	1.1	37
17	Treatment of high strength pharmaceutical wastewaters in a Thermophilic Aerobic MembraneÂReactor (TAMR). Water Research, 2014, 63, 190-198.	5.3	36
18	Minimization of municipal sewage sludge by means of a thermophilic membrane bioreactor with intermittent aeration. Journal of Cleaner Production, 2017, 143, 369-376.	4.6	36

#	Article	IF	CITATIONS
19	Disinfection in Wastewater Treatment Plants: Evaluation of Effectiveness and Acute Toxicity Effects. Sustainability, 2017, 9, 1704.	1.6	35
20	Techno-economic performance indicators of municipal solid waste collection strategies. Waste Management, 2018, 74, 86-97.	3.7	34
21	The reuse of biosolids on agricultural land: Critical issues and perspective. Water Environment Research, 2020, 92, 11-25.	1.3	30
22	A review on alternative binders, admixtures and water for the production of sustainable concrete. Journal of Cleaner Production, 2021, 295, 126408.	4.6	30
23	The Valorization of Ammonia in Manure Digestate by Means of Alternative Stripping Reactors. Sustainability, 2018, 10, 3073.	1.6	29
24	Disinfection of Wastewater by UV-Based Treatment for Reuse in a Circular Economy Perspective. Where Are We at?. International Journal of Environmental Research and Public Health, 2021, 18, 77.	1.2	29
25	Analysis of lockdown for CoViD-19 impact on NO2 in London, Milan and Paris: What lesson can be learnt?. Chemical Engineering Research and Design, 2021, 146, 952-960.	2.7	28
26	Why use a thermophilic aerobic membrane reactor for the treatment of industrial wastewater/liquid waste?. Environmental Technology (United Kingdom), 2015, 36, 2115-2124.	1.2	27
27	Foams in Wastewater Treatment Plants: From Causes to Control Methods. Applied Sciences (Switzerland), 2020, 10, 2716.	1.3	25
28	RECOVERY OF SEWAGE SLUDGE ON AGRICULTURAL LAND IN LOMBARDY: CURRENT ISSUES AND REGULATORY SCENARIOS. Environmental Engineering and Management Journal, 2015, 14, 1477-1486.	0.2	23
29	High-strength wastewater treatment in a pure oxygen thermophilic process: 11-year operation and monitoring of different plant configurations. Water Science and Technology, 2015, 71, 588-596.	1.2	22
30	Integrating novel (thermophilic aerobic membrane reactor-TAMR) and conventional (conventional) Tj ETQq0 0 0 r Bioresource Technology, 2018, 255, 213-219.	gBT /Over 4.8	lock 10 Tf 50 22
31	Integration between chemical oxidation and membrane thermophilic biological process. Water Science and Technology, 2010, 61, 227-234.	1.2	21
32	Treatment of high strength wastewater by thermophilic aerobic membrane reactor and possible valorisation of nutrients and organic carbon in its residues. Journal of Cleaner Production, 2021, 280, 124404.	4.6	21
33	Wet Oxidation as an Advanced and Sustainable Technology for Sludge Treatment and Management: Results from Research Activities and Industrial-Scale Experiences. Drying Technology, 2015, 33, 1309-1317.	1.7	19
34	Leaching behaviour of municipal solid waste incineration bottom ash: From granular material to monolithic concrete. Waste Management and Research, 2017, 35, 978-990.	2.2	19
35	Can particulate matter be identified as the primary cause of the rapid spread of CoViD-19 in some areas of Northern Italy?. Environmental Science and Pollution Research, 2021, 28, 33120-33132.	2.7	19
36	Treatment of high strength aqueous wastes in a thermophilic aerobic membrane reactor (TAMR): performance and resilience. Water Science and Technology, 2017, 76, 3236-3245.	1.2	18

#	Article	IF	CITATIONS
37	Photoelectrocatalysis on TiO2 meshes: different applications in the integrated urban water management. Environmental Science and Pollution Research, 2021, 28, 59452-59461.	2.7	18
38	Energy saving for air supply in a real WWTP: application of a fuzzy logic controller. Water Science and Technology, 2020, 81, 1552-1557.	1.2	16
39	Strong minimization of biological sludge production and enhancement of phosphorus bioavailability with a thermophilic biological fluidized bed reactor. Chemical Engineering Research and Design, 2021, 155, 262-276.	2.7	15
40	Reuse of wastewater: a feasible option, or not? A decision support system can solve the doubt. Desalination and Water Treatment, 2016, 57, 8670-8682.	1.0	14
41	Integrated RTD â~` CFD Hydrodynamic Analysis for Performance Assessment of Activated Sludge Reactors. Environmental Processes, 2018, 5, 23-42.	1.7	14
42	Adsorption of Fluorides in Drinking Water by Palm Residues. Sustainability, 2020, 12, 3786.	1.6	14
43	Identification and Localization of Hydrodynamic Anomalies in a Real Wastewater Treatment Plant by an Integrated Approach: RTD-CFD Analysis. Environmental Processes, 2020, 7, 563-578.	1.7	14
44	Analysis of the variation of costs for sewage sludge transport, recovery and disposal in Northern Italy: a recent survey (2015–2021). Water Science and Technology, 2022, 85, 1167-1175.	1.2	14
45	Tertiary ozonation of industrial wastewater for the removal of estrogenic compounds (NP and BPA): a full-scale case study. Water Science and Technology, 2013, 68, 567-574.	1.2	13
46	Treatment of aqueous wastes by means of Thermophilic Aerobic Membrane Reactor (TAMR) and nanofiltration (NF): process auditing of a full-scale plant. Environmental Monitoring and Assessment, 2019, 191, 708.	1.3	13
47	Oxygen transfer improvement in MBBR process. Environmental Science and Pollution Research, 2019, 26, 10727-10737.	2.7	13
48	Field monitoring and evaluation of innovative solutions for cleaning storm water runoff. Water Science and Technology, 2003, 47, 327-334.	1.2	12
49	Performance of Full-Scale Thermophilic Membrane Bioreactor and Assessment of the Effect of the Aqueous Residue on Mesophilic Biological Activity. Water (Switzerland), 2021, 13, 1754.	1.2	11
50	Wet Oxidation of Fine Soil Contaminated with Petroleum Hydrocarbons: A Way towards a Remediation Cycle. Environments - MDPI, 2018, 5, 69.	1.5	10
51	Reuse or Disposal of Waste Foundry Sand: An Insight into Environmental Aspects. Applied Sciences (Switzerland), 2022, 12, 6420.	1.3	10
52	Rheology and Microbiology of Sludge from a Thermophilic Aerobic Membrane Reactor. Journal of Chemistry, 2017, 2017, 1-19.	0.9	9
53	How to Produce an Alternative Carbon Source for Denitrification by Treating and Drastically Reducing Biological Sewage Sludge. Membranes, 2021, 11, 977.	1.4	9
54	Water Safety Plan for drinking water risk management: the case study of Mortara (Pavia, Italy). Revista Ambiente & Āgua, 2017, 12, 513.	0.1	8

#	Article	IF	CITATIONS
55	Applications of Up-Flow Anaerobic Sludge Blanket (UASB) and Characteristics of Its Microbial Community: A Review of Bibliometric Trend and Recent Findings. International Journal of Environmental Research and Public Health, 2021, 18, 10326.	1.2	8
56	Review of rheological behaviour of sewage sludge and its importance in the management of wastewater treatment plants. Water Practice and Technology, 2022, 17, 483-491.	1.0	8
57	Evaluation of concrete production with solid residues obtained from fluidized-bed incineration of MSW-derived solid recovered fuel (SRF). Journal of Material Cycles and Waste Management, 2017, 19, 1374-1383.	1.6	7
58	The upgrading of conventional activated sludge processes with thermophilic aerobic membrane reactor: Alternative solutions for sludge reduction. Journal of Environmental Management, 2020, 264, 110490.	3.8	7
59	Enhancing arsenic removal from groundwater at household level with naturally occurring iron. Revista Ambiente & Ãgua, 2016, 11, 486.	0.1	6
60	Synergy between anaerobic digestion and a postâ€ŧreatment based on Thermophilic Aerobic Membrane Reactor (TAMR). Environmental Progress and Sustainable Energy, 2017, 36, 1802-1809.	1.3	6
61	Process auditing and performance improvement in a mixed wastewater–aqueous waste treatment plant. Water Science and Technology, 2018, 77, 891-898.	1.2	6
62	Troubleshooting in a full-scale wastewater treatment plant: what can be learnt from tracer tests. International Journal of Environmental Science and Technology, 2019, 16, 3455-3466.	1.8	6
63	Drastic reduction of sludge in wastewater treatment plants: co-digestion of sewage sludge and aqueous waste in a thermophilic membrane reactor. Environmental Technology (United Kingdom), 2020, 41, 2554-2563.	1.2	6
64	Extraction and Purification of Phosphorus from the Ashes of Incinerated Biological Sewage Sludge. Water (Switzerland), 2021, 13, 1102.	1.2	6
65	Resilience of a Combined Chemical-Physical and Biological Wastewater Treatment Facility. Journal of Environmental Engineering, ASCE, 2019, 145, 05019002.	0.7	5
66	Wastewater treatment by means of thermophilic aerobic membrane reactors: respirometric tests and numerical models for the determination of stoichiometric/kinetic parameters. Environmental Technology (United Kingdom), 2019, 40, 182-191.	1.2	5
67	Reducing energy demand by the combined application of advanced control strategies in a full scale WWTP. Water Science and Technology, 2021, 83, 1813-1823.	1.2	5
68	The performance evaluation of wastewater service: a protocol based on performance indicators applied to sewer systems and wastewater treatment plants. Environmental Technology (United) Tj ETQq0 0 0 rg	gBT ‡Q verla	ock510 Tf 50 2
69	Research experiences on the reuse of industrial waste for concrete production. MATEC Web of Conferences, 2017, 121, 10001.	0.1	4
70	Numerical Analysis of a Full-Scale Thermophilic Biological System and Investigation of Nitrate and Ammonia Fates. Applied Sciences (Switzerland), 2022, 12, 6952.	1.3	4
71	CONTROL MEASURES FOR Cyanobacteria AND Cyanotoxins IN DRINKING WATER. Environmental Engineering and Management Journal, 2018, 17, 2455-2463.	0.2	3
72	An Evidence-Based Survey on Full-Scale Membrane Biological Reactors: Main Technical Features and Operational Aspects. Applied Sciences (Switzerland), 2022, 12, 6559.	1.3	2

#	Article	IF	CITATIONS
73	How to assess chemical oxidation efficiency. Water Science and Technology, 2004, 49, 1-6.	1.2	1
74	Integrated Assessment Challenges in the Water, Wastewater and Waste Domains: Case Studies. IFAC-PapersOnLine, 2018, 51, 25-30.	0.5	1
75	Treatment of waste activated sludge by means of alkaline hydrolysis under mild conditions. International Journal of Global Warming, 2017, 11, 1.	0.2	0
76	How to assess chemical oxidation efficiency. Water Science and Technology, 2004, 49, 1-6.	1.2	0