Lianhong Yin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/305498/publications.pdf

Version: 2024-02-01

69 3,432 39
papers citations h-index

97 97 97 3955
all docs docs citations times ranked citing authors

56

g-index

#	Article	IF	CITATIONS
1	MicroRNA-140-5p aggravates doxorubicin-induced cardiotoxicity by promoting myocardial oxidative stress via targeting Nrf2 and Sirt2. Redox Biology, 2018, 15, 284-296.	9.0	224
2	Protective effect of dioscin against doxorubicin-induced cardiotoxicity via adjusting microRNA-140-5p-mediated myocardial oxidative stress. Redox Biology, 2018, 16, 189-198.	9.0	151
3	Dioscin ameliorates cerebral ischemia/reperfusion injury through the downregulation of TLR4 signaling via HMGB-1 inhibition. Free Radical Biology and Medicine, 2015, 84, 103-115.	2.9	119
4	Protective effects of dioscin against doxorubicin-induced nephrotoxicity via adjusting FXR-mediated oxidative stress and inflammation. Toxicology, 2017, 378, 53-64.	4.2	113
5	Dioscin: A diverse acting natural compound with therapeutic potential in metabolic diseases, cancer, inflammation and infections. Pharmacological Research, 2018, 137, 259-269.	7.1	105
6	miR-125a-5p ameliorates hepatic glycolipid metabolism disorder in type 2 diabetes mellitus through targeting of STAT3. Theranostics, 2018, 8, 5593-5609.	10.0	99
7	Dioscin alleviates alcoholic liver fibrosis by attenuating hepatic stellate cell activation via the TLR4/MyD88/NF-κB signaling pathway. Scientific Reports, 2016, 5, 18038.	3.3	93
8	Mechanism investigation of dioscin against CCl 4 -induced acute liver damage in mice. Environmental Toxicology and Pharmacology, 2012, 34, 127-135.	4.0	92
9	Dioscin alleviates BDL- and DMN-induced hepatic fibrosis via Sirt1/Nrf2-mediated inhibition of p38 MAPK pathway. Toxicology and Applied Pharmacology, 2016, 292, 19-29.	2.8	89
10	Protective effects of dioscin against cisplatinâ€induced nephrotoxicity via the microRNAâ€34a/sirtuin 1 signalling pathway. British Journal of Pharmacology, 2017, 174, 2512-2527.	5.4	84
11	Potent effects of dioscin against liver fibrosis. Scientific Reports, 2015, 5, 9713.	3.3	79
12	Dioscin alleviates non-alcoholic fatty liver disease through adjusting lipid metabolism via SIRT1/AMPK signaling pathway. Pharmacological Research, 2018, 131, 51-60.	7.1	79
13	Potent effects of dioscin against obesity in mice. Scientific Reports, 2015, 5, 7973.	3.3	75
14	Protective effects of dioscin against fructose-induced renal damage via adjusting Sirt3-mediated oxidative stress, fibrosis, lipid metabolism and inflammation. Toxicology Letters, 2018, 284, 37-45.	0.8	75
15	Dioscin Attenuates Hepatic Ischemia-Reperfusion Injury in Rats Through Inhibition of Oxidative-Nitrative Stress, Inflammation and Apoptosis. Transplantation, 2014, 98, 604-611.	1.0	72
16	Dioscin attenuates renal ischemia/reperfusion injury by inhibiting the TLR4/MyD88 signaling pathway via up-regulation of HSP70. Pharmacological Research, 2015, 100, 341-352.	7.1	72
17	Dioscin reduces lipopolysaccharide-induced inflammatory liver injury via regulating TLR4/MyD88 signal pathway. International Immunopharmacology, 2016, 36, 132-141.	3.8	72
18	Dioscin alleviates lipopolysaccharide-induced inflammatory kidney injury via the microRNA let-7i/TLR4/MyD88 signaling pathway. Pharmacological Research, 2016, 111, 509-522.	7.1	71

#	Article	IF	CITATIONS
19	MicroRNA-128-3p aggravates doxorubicin-induced liver injury by promoting oxidative stress via targeting Sirtuin-1. Pharmacological Research, 2019, 146, 104276.	7.1	69
20	Naringin prevents carbon tetrachloride-induced acute liver injury in mice. Journal of Functional Foods, 2015, 12, 179-191.	3.4	65
21	Potent effects of dioscin against pancreatic cancer via miRâ€149â€3Pâ€mediated inhibition of the Akt1 signalling pathway. British Journal of Pharmacology, 2017, 174, 553-568.	5.4	65
22	Protective Effects of Dioscin against Lipopolysaccharide-Induced Acute Lung Injury through Inhibition of Oxidative Stress and Inflammation. Frontiers in Pharmacology, 2017, 8, 120.	3.5	62
23	Protective effects of the total saponins from Dioscorea nipponica Makino against carbon tetrachloride-induced liver injury in mice through suppression of apoptosis and inflammation. International Immunopharmacology, 2014, 19, 233-244.	3.8	60
24	Protective Effect of the Total Flavonoids from Rosa laevigata Michx Fruit on Renal Ischemia-Reperfusion Injury through Suppression of Oxidative Stress and Inflammation. Molecules, 2016, 21, 952.	3.8	57
25	Dioscin suppresses human laryngeal cancer cells growth via induction of cell-cycle arrest and MAPK-mediated mitochondrial-derived apoptosis and inhibition of tumor invasion. European Journal of Pharmacology, 2016, 774, 105-117.	3.5	55
26	Total Flavonoids from Rosa laevigata Michx Fruit Ameliorates Hepatic Ischemia/Reperfusion Injury through Inhibition of Oxidative Stress and Inflammation in Rats. Nutrients, 2016, 8, 418.	4.1	51
27	Protective effect of dioscin against intestinal ischemia/reperfusion injury via adjusting miR-351-5p-mediated oxidative stress. Pharmacological Research, 2018, 137, 56-63.	7.1	48
28	Potent effects of dioscin against hepatocellular carcinoma through regulating TP53â€induced glycolysis and apoptosis regulator (TIGAR)â€mediated apoptosis, autophagy, and DNA damage. British Journal of Pharmacology, 2019, 176, 919-937.	5.4	48
29	Dioscin Induces Apoptosis in Human Cervical Carcinoma HeLa and SiHa Cells through ROS-Mediated DNA Damage and the Mitochondrial Signaling Pathway. Molecules, 2016, 21, 730.	3.8	47
30	Protective effect of dioscin against thioacetamide-induced acute liver injury via FXR/AMPK signaling pathway in vivo. Biomedicine and Pharmacotherapy, 2018, 97, 481-488.	5.6	46
31	Application of Proteomic and Bioinformatic Techniques for Studying the Hepatoprotective Effect of Dioscin against CCl ₄ -induced Liver Damage in Mice. Planta Medica, 2011, 77, 407-415.	1.3	45
32	Potent Effects of Flavonoid-Rich Extract from Rosa laevigata Michx Fruit against Hydrogen Peroxide-Induced Damage in PC12 Cells via Attenuation of Oxidative Stress, Inflammation and Apoptosis. Molecules, 2014, 19, 11816-11832.	3.8	45
33	Dioscin reduces ovariectomy-induced bone loss by enhancing osteoblastogenesis and inhibiting osteoclastogenesis. Pharmacological Research, 2016, 108, 90-101.	7.1	45
34	Dioscin ameliorates intestinal ischemia/reperfusion injury via adjusting miR-351-5p/MAPK13-mediated inflammation and apoptosis. Pharmacological Research, 2019, 139, 431-439.	7.1	44
35	Dioscin alleviates dimethylnitrosamine-induced acute liver injury through regulating apoptosis, oxidative stress and inflammation. Environmental Toxicology and Pharmacology, 2016, 45, 193-201.	4.0	43
36	Potent effects of dioscin against gastric cancer in vitro and in vivo. Phytomedicine, 2016, 23, 274-282.	5.3	43

#	Article	IF	CITATIONS
37	Dioscin Inhibits HSC-T6 Cell Migration via Adjusting SDC-4 Expression: Insights from iTRAQ-Based Quantitative Proteomics. Frontiers in Pharmacology, 2017, 8, 665.	3.5	42
38	Simultaneous determination of 11 active components in two well-known traditional Chinese medicines by HPLC coupled with diode array detection for quality control. Journal of Pharmaceutical and Biomedical Analysis, 2009, 49, 1101-1108.	2.8	39
39	Effects of the Total Saponins from Rosa laevigata Michx Fruit against Acetaminophen-Induced Liver Damage in Mice via Induction of Autophagy and Suppression of Inflammation and Apoptosis. Molecules, 2014, 19, 7189-7206.	3.8	39
40	iTRAQ-based proteomics for studying the effects of dioscin against nonalcoholic fatty liver disease in rats. RSC Advances, 2014, 4, 30704.	3.6	34
41	Preparative purification of bromelain (EC 3.4.22.33) from pineapple fruit by high-speed counter-current chromatography using a reverse-micelle solvent system. Food Chemistry, 2011, 129, 925-932.	8.2	32
42	MicroRNAâ€351â€5p aggravates intestinal ischaemia/reperfusion injury through the targeting of MAPK13 and Sirtuinâ€6. British Journal of Pharmacology, 2018, 175, 3594-3609.	5.4	31
43	Protective Effect of the Total Saponins from Rosa laevigata Michx Fruit against Carbon Tetrachloride-Induced Liver Fibrosis in Rats. Nutrients, 2015, 7, 4829-4850.	4.1	30
44	Protective effects of dioscin against systemic inflammatory response syndromevia adjusting TLR2/MyD88/NFâ€Îºb signal pathway. International Immunopharmacology, 2018, 65, 458-469.	3.8	27
45	Neuroprotective Effect of Dioscin on the Aging Brain. Molecules, 2019, 24, 1247.	3.8	26
46	MicroRNAâ€29bâ€3p reduces intestinal ischaemia/reperfusion injury via targeting of TNF receptorâ€associated factor 3. British Journal of Pharmacology, 2019, 176, 3264-3278.	5.4	25
47	Dioscin, a potent ITGA5 inhibitor, reduces the synthesis of collagen against liver fibrosis: Insights from SILAC-based proteomics analysis. Food and Chemical Toxicology, 2017, 107, 318-328.	3.6	24
48	Dioscin attenuates gastric ischemia/reperfusion injury through the down-regulation of PKC/ERK1/2 signaling via PKCα and PKCβ2 inhibition. Chemico-Biological Interactions, 2016, 258, 234-244.	4.0	20
49	Dioscin Protects ANIT-Induced Intrahepatic Cholestasis Through Regulating Transporters, Apoptosis and Oxidative Stress. Frontiers in Pharmacology, 2017, 8, 116.	3.5	20
50	Protection by the Total Flavonoids from Rosa laevigata Michx Fruit against Lipopolysaccharide-Induced Liver Injury in Mice via Modulation of FXR Signaling. Foods, 2018, 7, 88.	4.3	19
51	In-silico prediction of drug targets, biological activities, signal pathways and regulating networks of dioscin based on bioinformatics. BMC Complementary and Alternative Medicine, 2015, 15, 41.	3.7	17
52	Inhibition of Epithelial TNF- \hat{l}_{\pm} Receptors by Purified Fruit Bromelain Ameliorates Intestinal Inflammation and Barrier Dysfunction in Colitis. Frontiers in Immunology, 2017, 8, 1468.	4.8	17
53	Trends in Counter-Current Chromatography: Applications to Natural Products Purification. Separation and Purification Reviews, 2010, 39, 33-62.	5.5	16
54	Protective effects of dioscin on vascular remodeling in pulmonary arterial hypertension via adjusting GRB2/ERK/PI3K-AKT signal. Biomedicine and Pharmacotherapy, 2021, 133, 111056.	5.6	15

#	Article	IF	CITATIONS
55	Simultaneous Determination of Ten Active Components in Chinese Medicine "Huang-Lian-Shang-Qing― Tablets by High-Performance Liquid Chromatography Coupled with Photodiode Array Detection. Analytical Letters, 2010, 43, 545-556.	1.8	14
56	Orthogonal test design for optimization of suitable conditions to separate Câ€phycocyanin from Spirulina platensis by highâ€speed counterâ€current chromatography using reverse micelle solvent system. Journal of Separation Science, 2011, 34, 1253-1260.	2.5	14
57	3D disorganization and rearrangement of genome provide insights into pathogenesis of NAFLD by integrated Hi-C, Nanopore, and RNA sequencing. Acta Pharmaceutica Sinica B, 2021, 11, 3150-3164.	12.0	14
58	Dioscin alleviates lung ischemia/reperfusion injury by regulating FXR-mediated oxidative stress, apoptosis, and inflammation. European Journal of Pharmacology, 2021, 908, 174321.	3. 5	14
59	Total saponins from (i) Rosa laevigata (i) Michx fruit attenuates hepatic steatosis induced by high-fat diet in rats. Food and Function, 2014, 5, 3065-3075.	4.6	13
60	Effect of dioscin on promoting liver regeneration via activating Notch1/Jagged1 signal pathway. Phytomedicine, 2018, 38, 107-117.	5. 3	13
61	Dioscin alleviates myocardial infarction injury via regulating BMP4/NOX1-mediated oxidative stress and inflammation. Phytomedicine, 2022, 103, 154222.	5.3	10
62	Inhibitory effects of dioscin on cytochrome P450 enzymes. RSC Advances, 2014, 4, 54026-54031.	3.6	6
63	MicroRNA-874-3p Aggravates Doxorubicin-Induced Renal Podocyte Injury via Targeting Methionine Sulfoxide Reductase B3. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-18.	4.0	5
64	Fruit bromelain ameliorates rat constipation induced by loperamide. RSC Advances, 2017, 7, 45252-45259.	3.6	4
65	Simultaneous quantification of Schisandrin B enantiomers in rat plasma by chiral LC–MS/MS: Application in a stereoselective pharmacokinetic study. Journal of Pharmaceutical and Biomedical Analysis, 2018, 159, 186-191.	2.8	4
66	Protective effects of dioscin against isoproterenol-induced cardiac hypertrophy via adjusting PKCε/ERK-mediated oxidative stress. European Journal of Pharmacology, 2021, 907, 174277.	3 . 5	3
67	MULTIPLE COMPOUNDS DETERMINATION AND FINGERPRINT ANALYSIS OF <i>PULSATILLA CHINENSIS (BUNGE) </i> PULSATILLA CHINENSIS (BUNGE) PULSATILLA CHINENSIS (BUNGE) PULSATILLA CHINENSIS (BUNGE) PULSATILLA CHINENSIS (BUNGE) CONTROL. Journal of Liquid Chromatography and Related Technologies, 2011, 34, 2339-2359.	1.0	2
68	Hengshun Aromatic Vinegar Ameliorates Vascular Endothelial Injury via Regulating PKCζ-Mediated Oxidative Stress and Apoptosis. Frontiers in Nutrition, 2021, 8, 635232.	3.7	2
69	Hengshun Aromatic Vinegar Improves Glycolipid Metabolism in Type 2 Diabetes Mellitus via Regulating PGC-1α/PGC-1Î ² Pathway. Frontiers in Pharmacology, 2021, 12, 641829.	3.5	1