Fan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/305481/publications.pdf

Version: 2024-02-01

567281 752698 20 914 15 20 h-index citations g-index papers 20 20 20 1034 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Self-powered electro-tactile system for virtual tactile experiences. Science Advances, 2021, 7, .	10.3	161
2	Self-Powered Room-Temperature Ethanol Sensor Based on Brush-Shaped Triboelectric Nanogenerator. Research, 2021, 2021, 8564780.	5.7	24
3	A universal managing circuit with stabilized voltage for maintaining safe operation of self-powered electronics system. IScience, 2021, 24, 102502.	4.1	15
4	Improvement of Conversion Efficiency from <scp>d</scp> -Glucose to <scp>d</scp> -Allulose by Whole-Cell Catalysts with Deep Eutectic Solvents. ACS Food Science & Technology, 2021, 1, 1323-1332.	2.7	3
5	Study of Contact Electrification at Liquid-Gas Interface. ACS Nano, 2021, 15, 18206-18213.	14.6	17
6	CNTs/Wood Composite Nanogenerator for Producing Both Steam and Electricity. ACS Applied Electronic Materials, 2021, 3, 5287-5295.	4.3	19
7	A sustainable system for maleic acid synthesis from biomassâ€derived sugar. Journal of Chemical Technology and Biotechnology, 2020, 95, 751-757.	3.2	16
8	Selfâ€Powered Sensor Based on Bionic Antennae Arrays and Triboelectric Nanogenerator for Identifying Noncontact Motions. Advanced Materials Technologies, 2020, 5, 1900789.	5.8	33
9	Dripping Channel Based Liquid Triboelectric Nanogenerators for Energy Harvesting and Sensing. ACS Nano, 2020, 14, 10510-10517.	14.6	60
10	Contributions of Different Functional Groups to Contact Electrification of Polymers. Advanced Materials, 2020, 32, e2001307.	21.0	194
11	Sustainable high-voltage source based on triboelectric nanogenerator with a charge accumulation strategy. Energy and Environmental Science, 2020, 13, 2178-2190.	30.8	166
12	Influence of Cu ²⁺ doping concentration on the catalytic activity of Cu _x Co _{3â^'x} O ₄ for rechargeable Liâ€"O ₂ batteries. Journal of Materials Chemistry A, 2017, 5, 18569-18576.	10.3	13
13	Assembly of Multifunctional Ni ₂ P/NiS _{0.66} Heterostructures and Their Superstructure for High Lithium and Sodium Anodic Performance. ACS Applied Materials & Samp; Interfaces, 2017, 9, 28549-28557.	8.0	26
14	CNT@MnO ₂ Hybrid as Cathode Catalysts Toward Longâ€Life Lithium Oxygen Batteries. ChemistrySelect, 2016, 1, 6749-6754.	1.5	6
15	Cobalt-Metal-Based Cathode for Lithium–Oxygen Battery with Improved Electrochemical Performance. ACS Catalysis, 2016, 6, 4149-4153.	11.2	38
16	The Influence of Electrode Microstructure on the Performance of Free-Standing Cathode for Aprotic Lithium-Oxygen Battery. Jom, 2016, 68, 2585-2592.	1.9	7
17	Synthesis of α-MnO ₂ nanowires modified by Co ₃ O ₄ nanoparticles as a high-performance catalyst for rechargeable Li–O ₂ batteries. Physical Chemistry Chemical Physics, 2016, 18, 926-931.	2.8	46
18	Reduced free-standing Co ₃ O ₄ @Ni cathode for lithium–oxygen batteries with enhanced electrochemical performance. RSC Advances, 2016, 6, 16263-16267.	3.6	16

#	ARTICLE	IF	CITATION
19	Facile synthesis of Fe@Fe2O3 core-shell nanowires as O2 electrode for high-energy Li-O2 batteries. Journal of Solid State Electrochemistry, 2016, 20, 1831-1836.	2.5	18
20	Open mesoporous spherical shell structured Co3O4with highly efficient catalytic performance in Li–O2batteries. Journal of Materials Chemistry A, 2015, 3, 7600-7606.	10.3	36