Liang Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3054549/publications.pdf

Version: 2024-02-01

		147801		138484	
70	3,623	31		58	
papers	citations	h-index		g-index	
			r		
72	72	72		6028	

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	ACE2 (Angiotensin-Converting Enzyme 2) and TMPRSS2 (Transmembrane Serine Protease 2) Expression and Localization of SARS-CoV-2 Infection in the Human Heart. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 542-544.	2.4	27
2	Comparison of Endothelial Barrier Functional Recovery After Implantation of a Novel Biodegradable-Polymer Sirolimus-Eluting Stent in Comparison to Durable- and Biodegradable-Polymer Everolimus-Eluting Stents. Cardiovascular Revascularization Medicine, 2021, 24, 1-10.	0.8	8
3	Thromboresistance and endothelial healing in polymer-coated versus polymer-free drug-eluting stents: Implications for short-term dual anti-platelet therapy. International Journal of Cardiology, 2021, 327, 52-57.	1.7	11
4	<i>RIPK1</i> Expression Associates With Inflammation in Early Atherosclerosis in Humans and Can Be Therapeutically Silenced to Reduce NF-κB Activation and Atherogenesis in Mice. Circulation, 2021, 143, 163-177.	1.6	102
5	Risk prediction of in-stent restenosis among patients with coronary drug-eluting stents: current clinical approaches and challenges. Expert Review of Cardiovascular Therapy, 2021, 19, 801-816.	1.5	8
6	Histopathologic analysis of extracted thrombi from deep venous thrombosis and pulmonary embolism: Mechanisms and timing. Catheterization and Cardiovascular Interventions, 2021, 97, 1422-1429.	1.7	14
7	Comprehensive Assessment of Human Accessory Renal Artery Periarterial Renal Sympathetic Nerve Distribution. JACC: Cardiovascular Interventions, 2021, 14, 304-315.	2.9	13
8	Single-cell analysis shows that adipose tissue of persons with both HIV and diabetes is enriched for clonal, cytotoxic, and CMV-specific CD4+ TÂcells. Cell Reports Medicine, 2021, 2, 100205.	6.5	16
9	Multiple cell types contribute to the atherosclerotic lesion fibrous cap by PDGFR \hat{l}^2 and bioenergetic mechanisms. Nature Metabolism, 2021, 3, 166-181.	11.9	87
10	Microthrombi as a Major Cause of Cardiac Injury in COVID-19. Circulation, 2021, 143, 1031-1042.	1.6	196
11	Eruptive Calcified Nodules as a Potential Mechanism of Acute Coronary Thrombosis and Sudden Death. Journal of the American College of Cardiology, 2021, 77, 1599-1611.	2.8	64
12	Anticytomegalovirus CD4 + T Cells Are Associated With Subclinical Atherosclerosis in Persons With HIV. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1459-1473.	2.4	7
13	Endothelial Recovery in Bare Metal Stents and Drug-Eluting Stents on a Single-Cell Level. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2277-2292.	2.4	7
14	Pathological Evidence for SARS-CoV-2 as a Cause of Myocarditis. Journal of the American College of Cardiology, 2021, 77, 314-325.	2.8	177
15	Drug-eluting coronary stents: insights from preclinical and pathology studies. Nature Reviews Cardiology, 2020, 17, 37-51.	13.7	150
16	Diversity of macrophage phenotypes and responses in atherosclerosis. Cellular and Molecular Life Sciences, 2020, 77, 1919-1932.	5.4	118
17	Imaging Human Platelet Adhesion and Albumin Retention to Coronary Stents in Real Time. Cardiovascular Revascularization Medicine, 2020, 21, 245-248.	0.8	O
18	Genetic Regulation of Atherosclerosis-Relevant Phenotypes in Human Vascular Smooth Muscle Cells. Circulation Research, 2020, 127, 1552-1565.	4.5	60

#	Article	IF	CITATIONS
19	Assessment of a pro-healing stent in an animal model of early neoatherosclerosis. Scientific Reports, 2020, 10, 8227.	3.3	4
20	Localized Antileptin Therapy Prevents Aortic Root Dilatation and Preserves Left Ventricular Systolic Function in a Murine Model of Marfan Syndrome. Journal of the American Heart Association, 2020, 9, e014761.	3.7	6
21	Advances in mammalian target of rapamycin kinase inhibitors: application to devices used in the treatment of coronary artery disease. Future Medicinal Chemistry, 2020, 12, 1181-1195.	2.3	2
22	Myristoylation of LMCD1 Leads to Its Species-Specific Derepression of E2F1 and NFATc1 in the Modulation of CDC6 and IL-33 Expression During Development of Vascular Lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 1256-1274.	2.4	14
23	Histopathologic and physiologic effect of bifurcation stenting: current status and future prospects. Expert Review of Medical Devices, 2020, 17, 189-200.	2.8	5
24	Making Novel Genetic Associations With Carotid Intima-Media Thickness Using the UK Biobank. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 297-300.	2.4	1
25	TREML4 Promotes Inflammatory Programs in Human and Murine Macrophages and Alters Atherosclerosis Lesion Composition in the Apolipoprotein E Deficient Mouse. Frontiers in Immunology, 2020, 11, 397.	4.8	16
26	Knockout of the Murine Ortholog to the Human 9p21 Coronary Artery Disease Locus Leads to Smooth Muscle Cell Proliferation, Vascular Calcification, and Advanced Atherosclerosis. Circulation, 2020, 141, 1274-1276.	1.6	12
27	RAGE impairs murine diabetic atherosclerosis regression and implicates IRF7 in macrophage inflammation and cholesterol metabolism. JCI Insight, 2020, 5, .	5.0	38
28	Detection of cholesterol crystals by optical coherence tomography. EuroIntervention, 2020, 16, 395-403.	3.2	16
29	New insights into the role of iron in inflammation and atherosclerosis. EBioMedicine, 2019, 47, 598-606.	6.1	96
30	Evaluation and Management of the Vulnerable Plaque. Current Cardiovascular Risk Reports, 2019, 13, 1.	2.0	3
31	Ironing-Out the Role of Hepcidin in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 303-305.	2.4	6
32	Smooth muscle cell–specific fibronectin-EDA mediates phenotypic switching and neointimal hyperplasia. Journal of Clinical Investigation, 2019, 130, 295-314.	8.2	45
33	Autophagy Is Required for Sortilin-Mediated Degradation of Apolipoprotein B100. Circulation Research, 2018, 122, 568-582.	4.5	35
34	Ossabaw Pigs With a PCSK9 Gainâ€ofâ€Function Mutation Develop Accelerated Coronary Atherosclerotic Lesions: A Novel Model for Preclinical Studies. Journal of the American Heart Association, 2018, 7, .	3.7	21
35	Is there an effect of antithrombotics on carotid intraplaque haemorrhage?. European Heart Journal, 2018, 39, 3377-3380.	2.2	2
36	Coronary pathology of inherited generalized arterial calcification of infancy: a case report. Cardiovascular Pathology, 2018, 36, 15-19.	1.6	3

#	Article	IF	CITATIONS
37	Direct Targeting of the mTOR (Mammalian Target of Rapamycin) Kinase Improves Endothelial Permeability in Drug-Eluting Stents—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2217-2224.	2.4	30
38	CD163+ macrophages promote angiogenesis and vascular permeability accompanied by inflammation in atherosclerosis. Journal of Clinical Investigation, 2018, 128, 1106-1124.	8.2	209
39	Linking Hemorrhage, Angiogenesis, Macrophages, and Iron Metabolism in Atherosclerotic Vascular Diseases. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, e33-e39.	2.4	38
40	Inhibition of Smooth Muscle \hat{l}^2 -Catenin Hinders Neointima Formation After Vascular Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 879-888.	2.4	17
41	Endothelial Barrier Protein Expression inÂBiodegradable Polymer Sirolimus-Eluting VersusÂDurable PolymerÂEverolimus-Eluting Metallic Stents. JACC: Cardiovascular Interventions, 2017, 10, 2375-2387.	2.9	27
42	Community-based statins and advanced carotid plaque: Role of CD163 positive macrophages in lipoprotein-associated phospholipase A2 activity in atherosclerotic plaque. Atherosclerosis, 2017, 267, 78-89.	0.8	12
43	Heart-resident macrophages: are they involved in the rhythm of every beat?. Journal of Thoracic Disease, 2017, 9, 2264-2267.	1.4	11
44	TCT-465 Everolimus eluting stents increase endothelial permeability and prevent maturation $\hat{a} \in ``Uncovering the mechanism of Neoatherosclerosis. Journal of the American College of Cardiology, 2016, 68, B187.$	2.8	0
45	Control of mitochondrial function and cell growth by the atypical cadherin Fat1. Nature, 2016, 539, 575-578.	27.8	52
46	Targeting macrophage necroptosis for therapeutic and diagnostic interventions in atherosclerosis. Science Advances, 2016, 2, e1600224.	10.3	214
47	<i>CDKN2B</i> Regulates <i>TGF</i> \hat{l}^2 Signaling and Smooth Muscle Cell Investment of Hypoxic Neovessels. Circulation Research, 2016, 118, 230-240.	4.5	52
48	Hepcidin-ferroportin axis controls toll-like receptor 4 dependent macrophage inflammatory responses in human atherosclerotic plaques. Atherosclerosis, 2015, 241, 692-700.	0.8	29
49	A Regulator of Secretory Vesicle Size, Kelch-Like Protein 12, Facilitates the Secretion of Apolipoprotein B100 and Very-Low-Density Lipoproteins—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 251-254.	2.4	19
50	Longâ€term therapeutic silencing of miRâ€33 increases circulating triglyceride levels and hepatic lipid accumulation in mice. EMBO Molecular Medicine, 2014, 6, 1133-1141.	6.9	127
51	Docosahexaenoic acid impairs the maturation of very low density lipoproteins in rat hepatic cells. Journal of Lipid Research, 2014, 55, 75-84.	4.2	12
52	Zinc and autophagy. BioMetals, 2014, 27, 1087-1096.	4.1	65
53	Rapid regression of atherosclerosis with MTP inhibitor treatment. Atherosclerosis, 2013, 227, 125-129.	0.8	48
54	Endothelial Expression of Guidance Cues in Vessel Wall Homeostasis Dysregulation Under Proatherosclerotic Conditions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 911-919.	2.4	89

#	Article	IF	CITATIONS
55	Hypoxia Induces Netrin-1 and Unc5b in Atherosclerotic Plaques. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1180-1188.	2.4	88
56	Insulin-Stimulated Degradation of Apolipoprotein B100: Roles of Class II Phosphatidylinositol-3-Kinase and Autophagy. PLoS ONE, 2013, 8, e57590.	2.5	27
57	Protein disulfide isomerases contribute differentially to the endoplasmic reticulum–associated degradation of apolipoprotein B and other substrates. Molecular Biology of the Cell, 2012, 23, 520-532.	2.1	59
58	826 Mutated Gpd1, Encoding Glycerol-3-Phosphate Dehydrogenase 1, Causes Transient Infantile Hypertriglyceridemia With Fatty Liver and Hepatic Fibrosis. Gastroenterology, 2012, 142, S-143.	1.3	0
59	Transient Infantile Hypertriglyceridemia, Fatty Liver, and Hepatic Fibrosis Caused by Mutated GPD1, Encoding Glycerol-3-Phosphate Dehydrogenase 1. American Journal of Human Genetics, 2012, 90, 49-60.	6.2	74
60	Hepatic sortilin regulates both apolipoprotein B secretion and LDL catabolism. Journal of Clinical Investigation, 2012, 122, 2807-2816.	8.2	190
61	Rat Carboxylesterase ES-4 Enzyme Functions as a Major Hepatic Neutral Cholesteryl Ester Hydrolase*. Journal of Biological Chemistry, 2011, 286, 39683-39692.	3.4	4
62	MTF-1-Mediated Repression of the Zinc Transporter Zip10 Is Alleviated by Zinc Restriction. PLoS ONE, 2011, 6, e21526.	2.5	92
63	STAT5-glucocorticoid receptor interaction and MTF-1 regulate the expression of ZnT2 (Slc30a2) in pancreatic acinar cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2818-2823.	7.1	101
64	$Kr\tilde{A}^{1}/_{4}$ ppel-like factor 4 regulates adaptive expression of the zinc transporter Zip4 in mouse small intestine. American Journal of Physiology - Renal Physiology, 2009, 296, G517-G523.	3.4	59
65	An intron-free methyl jasmonate inducible geranylgeranyl diphosphate synthase gene from Taxus media and its functional identification in yeast. Molecular Biology, 2005, 39, 11-17.	1.3	15
66	Oligomeric Bax Is a Component of the Putative CytochromecRelease Channel MAC, Mitochondrial Apoptosis-induced Channel. Molecular Biology of the Cell, 2005, 16, 2424-2432.	2.1	213
67	Molecular cloning and characterization of a 1-deoxy-d-xylulose 5-phosphate reductoisomerase gene fromGinkgo biloba. DNA Sequence, 2005, 16, 111-120.	0.7	30
68	Effects of cytochromecon the mitochondrial apoptosis-induced channel MAC. American Journal of Physiology - Cell Physiology, 2004, 286, C1109-C1117.	4.6	69
69	A New Geranylgeranyl Diphosphate Synthase Gene fromGinkgo biloba, which Intermediates the Biosynthesis of the Key Precursor for Ginkgolides. DNA Sequence, 2004, 15, 153-158.	0.7	28
70	Rapid Isolation of Highâ€Quality Total RNA from Taxus and Ginkgo. Preparative Biochemistry and Biotechnology, 2004, 34, 209-214.	1.9	133