Simon J Conn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3054427/publications.pdf Version: 2024-02-01

SIMON L CONN

#	Article	IF	CITATIONS
1	SRRM4 Expands the Repertoire of Circular RNAs by Regulating Microexon Inclusion. Cells, 2020, 9, 2488.	1.8	8
2	The Suitability of Glioblastoma Cell Lines as Models for Primary Glioblastoma Cell Metabolism. Cancers, 2020, 12, 3722.	1.7	10
3	The Non-Coding RNA Journal Club: Highlights on Recent Papers—7. Non-coding RNA, 2019, 5, 40.	1.3	2
4	SplintQuant: a method for accurately quantifying circular RNA transcript abundance without reverse transcription bias. Rna, 2019, 25, 1202-1210.	1.6	29
5	A Neuroethics Framework for the Australian Brain Initiative. Neuron, 2019, 101, 365-369.	3.8	11
6	A Highly Efficient Strategy for Overexpressing circRNAs. Methods in Molecular Biology, 2018, 1724, 97-105.	0.4	16
7	Tetramerization of MADS family transcription factors SEPALLATA3 and AGAMOUS is required for floral meristem determinacy in Arabidopsis. Nucleic Acids Research, 2018, 46, 4966-4977.	6.5	81
8	CircRNAs in Plants. Advances in Experimental Medicine and Biology, 2018, 1087, 329-343.	0.8	37
9	The Non-Coding RNA Journal Club: Highlights on Recent Papers—6. Non-coding RNA, 2018, 4, 23.	1.3	0
10	Don't go in circles: confounding factors in gene expression profiling. EMBO Journal, 2018, 37, .	3.5	8
11	miRâ€200/375 control epithelial plasticityâ€associated alternative splicing by repressing the <scp>RNA</scp> â€binding protein Quaking. EMBO Journal, 2018, 37, .	3.5	82
12	A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nature Plants, 2017, 3, 17053.	4.7	434
13	Heterodimerization of Arabidopsis calcium/proton exchangers contributes to regulation of guard cell dynamics and plant defense responses. Journal of Experimental Botany, 2017, 68, 4171-4183.	2.4	39
14	Variation for N Uptake System in Maize: Genotypic Response to N Supply. Frontiers in Plant Science, 2015, 6, 936.	1.7	39
15	The RNA Binding Protein Quaking Regulates Formation of circRNAs. Cell, 2015, 160, 1125-1134.	13.5	1,698
16	Protocol: a fast and simple in situ PCR method for localising gene expression in plant tissue. Plant Methods, 2014, 10, 29.	1.9	45
17	Structural Basis for the Oligomerization of the MADS Domain Transcription Factor SEPALLATA3 in <i>Arabidopsis</i> Â. Plant Cell, 2014, 26, 3603-3615.	3.1	97
18	RNA Clamping by Vasa Assembles a piRNA Amplifier Complex on Transposon Transcripts. Cell, 2014, 157, 1698-1711.	13.5	208

SIMON J CONN

#	Article	IF	CITATIONS
19	Protocol: optimising hydroponic growth systems for nutritional and physiological analysis of Arabidopsis thaliana and other plants. Plant Methods, 2013, 9, 4.	1.9	167
20	The response of the maize nitrate transport system to nitrogen demand and supply across the lifecycle. New Phytologist, 2013, 198, 82-94.	3.5	108
21	An update on magnesium homeostasis mechanisms in plants. Metallomics, 2013, 5, 1170.	1.0	133
22	Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nature Biotechnology, 2012, 30, 360-364.	9.4	690
23	Exploiting natural variation to uncover candidate genes that control element accumulation in Arabidopsis thaliana. New Phytologist, 2012, 193, 859-866.	3.5	24
24	Transcriptomics on Small Samples. Methods in Molecular Biology, 2012, 913, 335-350.	0.4	2
25	Cell-Specific Vacuolar Calcium Storage Mediated by <i>CAX1</i> Regulates Apoplastic Calcium Concentration, Gas Exchange, and Plant Productivity in <i>Arabidopsis</i> Â Â. Plant Cell, 2011, 23, 240-257.	3.1	222
26	Calcium delivery and storage in plant leaves: exploring the link with water flow. Journal of Experimental Botany, 2011, 62, 2233-2250.	2.4	208
27	Magnesium transporters, MGT2/MRS2â€1 and MGT3/MRS2â€5, are important for magnesium partitioning within <i>Arabidopsis thaliana</i> mesophyll vacuoles. New Phytologist, 2011, 190, 583-594.	3.5	99
28	Cell-specific compartmentation of mineral nutrients is an essential mechanism for optimal plant productivity— another role for <i>TPC1</i> ?. Plant Signaling and Behavior, 2011, 6, 1656-1661.	1.2	34
29	Characterization of anthocyanic vacuolar inclusions in Vitis vinifera L. cell suspension cultures. Planta, 2010, 231, 1343-1360.	1.6	55
30	Xylem ionic relations and salinity tolerance in barley. Plant Journal, 2010, 61, 839-853.	2.8	198
31	Comparative physiology of elemental distributions in plants. Annals of Botany, 2010, 105, 1081-1102.	1.4	288
32	Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins. Journal of Experimental Botany, 2008, 59, 3621-3634.	2.4	193
33	Developmental Activation of the Rb–E2F Pathway and Establishment of Cell Cycle-regulated Cyclin-dependent Kinase Activity during Embryonic Stem Cell Differentiation. Molecular Biology of the Cell, 2005, 16, 2018-2027.	0.9	152
34	To Stretch the Boundary of Secondary Metabolite Production in Plant Cell-Based Bioprocessing: Anthocyanin as a Case Study. Journal of Biomedicine and Biotechnology, 2004, 2004, 264-271.	3.0	29
35	Anthocyanic vacuolar inclusions (AVIs) selectively bind acylated anthocyanins in Vitis vinifera L. (grapevine) suspension culture. Biotechnology Letters, 2003, 25, 835-839.	1.1	62
36	Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities. Oncogene, 2002, 21, 8320-8333.	2.6	332