
Lei Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3053874/publications.pdf Version: 2024-02-01

I EI SHI

#	Article	IF	CITATIONS
1	Hybrid nanofibrous aerogels for all-in-one solar-driven interfacial evaporation. Journal of Colloid and Interface Science, 2022, 624, 377-384.	9.4	23
2	Development of TiO2/RT–35HC based nanocomposite phase change materials (NCPCMs) for thermal management applications. Sustainable Energy Technologies and Assessments, 2021, 43, 100865.	2.7	10
3	A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage. Renewable and Sustainable Energy Reviews, 2021, 135, 110127.	16.4	307
4	Thermophysical characteristics and enhancement analysis of carbon-additives phase change mono and hybrid materials for thermal management of electronic devices. Journal of Energy Storage, 2021, 34, 102231.	8.1	25
5	Thermo-physical properties prediction of carbon-based magnetic nanofluids based on an artificial neural network. Renewable and Sustainable Energy Reviews, 2021, 149, 111341.	16.4	38
6	Rapid hydrate-based methane storage promoted by bilayer surfactant-coated Fe3O4 nanoparticles under a magnetic field. Fuel, 2021, 303, 121248.	6.4	20
7	Magnetic Field-induced Enhancement of Phase Change Heat Transfer via Biomimetic Porous Structure for Solar-thermal Energy Storage. Journal of Bionic Engineering, 2021, 18, 1215-1224.	5.0	11
8	Synthesis of size-controlled hollow Fe3O4 nanospheres and their growth mechanism. Particuology, 2020, 49, 16-23.	3.6	17
9	Investigation of photocatalytic activity through photo-thermal heating enabled by Fe3O4/TiO2 composite under magnetic field. Solar Energy, 2020, 196, 505-512.	6.1	58
10	Magnetically-accelerated photo-thermal conversion and energy storage based on bionic porous nanoparticles. Solar Energy Materials and Solar Cells, 2020, 217, 110681.	6.2	14
11	Solar-thermal conversion and steam generation: a review. Applied Thermal Engineering, 2020, 179, 115691.	6.0	95
12	Dynamic tuning of magnetic phase change composites for solar-thermal conversion and energy storage. Applied Energy, 2020, 263, 114570.	10.1	50
13	Magneto-responsive thermal switch for remote-controlled locomotion and heat transfer based on magnetic nanofluid. Nano Energy, 2020, 71, 104582.	16.0	39
14	Bio-inspired Recyclable Carbon Interface for Solar Steam Generation. Journal of Bionic Engineering, 2020, 17, 315-325.	5.0	6
15	Magnetic regulating the phase change process of Fe3O4-paraffin wax nanocomposites in a square cavity. Energy Conversion and Management, 2020, 213, 112829.	9.2	32
16	Magnetocontrollable convective heat transfer of nanofluid through a straight tube. Applied Thermal Engineering, 2019, 162, 114220.	6.0	29
17	Controllable natural convection in a rectangular enclosure filled with Fe3O4@CNT nanofluids. International Journal of Heat and Mass Transfer, 2019, 140, 399-409.	4.8	22
18	Photocatalytic activity enhanced by photo-thermal conversion with recyclable hollow Fe3O4@TiO2 nanoparticles. IOP Conference Series: Materials Science and Engineering, 2019, 556, 012030.	0.6	0

Lei Shi

#	Article	IF	CITATIONS
19	Thermophysical properties of Fe3O4@CNT nanofluid and controllable heat transfer performance under magnetic field. Energy Conversion and Management, 2018, 177, 249-257.	9.2	65
20	Recyclable photo-thermal conversion and purification systems via Fe3O4@TiO2 nanoparticles. Energy Conversion and Management, 2018, 171, 272-278.	9.2	112
21	Recyclable Fe 3 O 4 @CNT nanoparticles for high-efficiency solar vapor generation. Energy Conversion and Management, 2017, 149, 401-408.	9.2	109
22	Investigation of photothermal heating enabled by plasmonic nanofluids for direct solar steam generation. Solar Energy, 2017, 157, 35-46.	6.1	174
23	Recyclable purification-evaporation systems based on Fe 3 O 4 @TiO 2 nanoparticles. Energy Procedia, 2017, 142, 356-361.	1.8	9
24	Direct vapor generation through localized solar heating via carbon-nanotube nanofluid. Energy Conversion and Management, 2016, 130, 176-183.	9.2	195