Nehal A Parikh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3053799/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magnetic resonance spectroscopy brain metabolites at term and 3-year neurodevelopmental outcomes in very preterm infants. Pediatric Research, 2022, 92, 299-306.	1.1	3
2	Brain microstructural antecedents of visual difficulties in infants born very preterm. NeuroImage: Clinical, 2022, 34, 102987.	1.4	3
3	Extracallosal Structural Connectivity Is Positively Associated With Language Performance in Well-Performing Children Born Extremely Preterm. Frontiers in Pediatrics, 2022, 10, 821121.	0.9	4
4	ConCeptCNN: A novel multiâ€filter convolutional neural network for the prediction of neurodevelopmental disorders using brain connectome. Medical Physics, 2022, 49, 3171-3184.	1.6	8
5	Multi-Contrast MRI Image Synthesis Using Switchable Cycle-Consistent Generative Adversarial Networks. Diagnostics, 2022, 12, 816.	1.3	9
6	Acute histologic chorioamnionitis independently and directly increases the risk for brain abnormalities seen on magnetic resonance imaging in very preterm infants. American Journal of Obstetrics and Gynecology, 2022, 227, 623.e1-623.e13.	0.7	16
7	A novel Ontology-guided Attribute Partitioning ensemble learning model for early prediction of cognitive deficits using quantitative Structural MRI in very preterm infants. Neurolmage, 2022, 260, 119484.	2.1	1
8	Prenatal opioid exposure is associated with smaller brain volumes in multiple regions. Pediatric Research, 2021, 90, 397-402.	1.1	41
9	DeepLiverNet: a deep transfer learning model for classifying liver stiffness using clinical and T2-weighted magnetic resonance imaging data in children and young adults. Pediatric Radiology, 2021, 51, 392-402.	1.1	10
10	Perinatal Risk and Protective Factors in the Development of Diffuse White Matter Abnormality on Term-Equivalent Age Magnetic Resonance Imaging in Infants Born Very Preterm. Journal of Pediatrics, 2021, 233, 58-65.e3.	0.9	23
11	Limitations of Conventional Magnetic Resonance Imaging as a Predictor of Death or Disability Following Neonatal Hypoxic–Ischemic Encephalopathy in the Late Hypothermia Trial. Journal of Pediatrics, 2021, 230, 106-111.e6.	0.9	12
12	Adverse effects of perinatal illness severity on neurodevelopment are partially mediated by early brain abnormalities in infants born very preterm. Journal of Perinatology, 2021, 41, 519-527.	0.9	8
13	Effects of intraventricular hemorrhage on white matter microstructural changes at term and early developmental outcomes in infants born very preterm. Neuroradiology, 2021, 63, 1549-1561.	1.1	6
14	Automatic Segmentation of Diffuse White Matter Abnormality on T2-weighted Brain MR Images Using Deep Learning in Very Preterm Infants. Radiology: Artificial Intelligence, 2021, 3, e200166.	3.0	7
15	Diffusion MRI Microstructural Abnormalities at Term-Equivalent Age Are Associated with Neurodevelopmental Outcomes at 3 Years of Age in Very Preterm Infants. American Journal of Neuroradiology, 2021, 42, 1535-1542.	1.2	9
16	Associations Between Early Structural Magnetic Resonance Imaging, Hammersmith Infant Neurological Examination, and General Movements Assessment in Infants Born Very Preterm. Journal of Pediatrics, 2021, 232, 80-86.e2.	0.9	18
17	The Swinging Pendulum of Postnatal Corticosteroid Use. JAMA Pediatrics, 2021, 175, e206842.	3.3	3
18	Microstructural Measures of the Inferior Longitudinal Fasciculus Predict Later Cognitive and Language Development in Infants Born With Extremely Low Birth Weight. Journal of Child Neurology, 2021, 36, 981-989.	0.7	3

#	Article	IF	CITATIONS
19	ls a New Era Coming for Bronchopulmonary Dysplasia Prevention With Corticosteroids?—Reply. JAMA Pediatrics, 2021, 175, 1080.	3.3	0
20	Early micro―and macrostructure of sensorimotor tracts and development of cerebral palsy in high risk infants. Human Brain Mapping, 2021, 42, 4708-4721.	1.9	6
21	Does prolonged ductal patency cause bronchopulmonary dysplasia or is the direction of causation reversed?. Journal of Pediatrics, 2021, 234, 290-291.	0.9	0
22	Functional Hyperconnectivity during a Stories Listening Task in Magnetoencephalography Is Associated with Language Gains for Children Born Extremely Preterm. Brain Sciences, 2021, 11, 1271.	1.1	7
23	Effects of prenatal opioid exposure on functional networks in infancy. Developmental Cognitive Neuroscience, 2021, 51, 100996.	1.9	18
24	Extremely preterm children demonstrate hyperconnectivity during verb generation: A multimodal approach. NeuroImage: Clinical, 2021, 30, 102589.	1.4	4
25	Diffuse white matter abnormality in very preterm infants at term reflects reduced brain network efficiency. NeuroImage: Clinical, 2021, 31, 102739.	1.4	6
26	Deep Multimodal Learning From MRI and Clinical Data for Early Prediction of Neurodevelopmental Deficits in Very Preterm Infants. Frontiers in Neuroscience, 2021, 15, 753033.	1.4	14
27	Association between brain structural network efficiency at term-equivalent age and early development of cerebral palsy in very preterm infants. NeuroImage, 2021, 245, 118688.	2.1	3
28	Neonatal Functional and Structural Connectivity Are Associated with Cerebral Palsy at Two Years of Age. American Journal of Perinatology, 2020, 37, 137-145.	0.6	8
29	Early cortical maturation predicts neurodevelopment in very preterm infants. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2020, 105, 460-465.	1.4	39
30	Early Prediction of Cognitive Deficit in Very Preterm Infants Using Brain Structural Connectome With Transfer Learning Enhanced Deep Convolutional Neural Networks. Frontiers in Neuroscience, 2020, 14, 858.	1.4	13
31	Novel diffuse white matter abnormality biomarker at term-equivalent age enhances prediction of long-term motor development in very preterm children. Scientific Reports, 2020, 10, 15920.	1.6	12
32	A multi-task, multi-stage deep transfer learning model for early prediction of neurodevelopment in very preterm infants. Scientific Reports, 2020, 10, 15072.	1.6	26
33	Automated brain morphometric biomarkers from MRI at term predict motor development in very preterm infants. NeuroImage: Clinical, 2020, 28, 102475.	1.4	16
34	Early brain abnormalities in infants born very preterm predict under-reactive temperament. Early Human Development, 2020, 144, 104985.	0.8	22
35	Objectively Diagnosed Diffuse White Matter Abnormality at Term Is an Independent Predictor of Cognitive and Language Outcomes in Infants Born Very Preterm. Journal of Pediatrics, 2020, 220, 56-63.	0.9	15
36	Behavior Profiles at 2ÂYears for Children Born Extremely PretermÂwithÂBronchopulmonary Dysplasia. Journal of Pediatrics, 2020, 219, 152-159.e5.	0.9	12

#	Article	IF	CITATIONS
37	Antecedents of Objectively Diagnosed Diffuse White Matter Abnormality in Very Preterm Infants. Pediatric Neurology, 2020, 106, 56-62.	1.0	9
38	Objective and Automated Detection of Diffuse White Matter Abnormality in Preterm Infants Using Deep Convolutional Neural Networks. Frontiers in Neuroscience, 2019, 13, 610.	1.4	13
39	Developmental Outcomes of Extremely Preterm Infants with a Need for Child Protective Services Supervision. Journal of Pediatrics, 2019, 215, 41-49.e4.	0.9	7
40	Early Detection of Cerebral Palsy Using Sensorimotor Tract Biomarkers in Very Preterm Infants. Pediatric Neurology, 2019, 98, 53-60.	1.0	22
41	Retinopathy of Prematurity and Bronchopulmonary Dysplasia are Independent Antecedents of Cortical Maturational Abnormalities in Very Preterm Infants. Scientific Reports, 2019, 9, 19679.	1.6	18
42	White Matter Injury and Structural Anomalies in Infants with Prenatal Opioid Exposue. American Journal of Neuroradiology, 2019, 40, 2161-2165.	1.2	32
43	A Multichannel Deep Neural Network Model Analyzing Multiscale Functional Brain Connectome Data for Attention Deficit Hyperactivity Disorder Detection. Radiology: Artificial Intelligence, 2019, 2, e190012.	3.0	29
44	Antecedents and Outcomes of Abnormal Cranial Imaging in Moderately Preterm Infants. Journal of Pediatrics, 2018, 195, 66-72.e3.	0.9	12
45	Effect of Therapeutic Hypothermia Initiated After 6 Hours of Age on Death or Disability Among Newborns With Hypoxic-Ischemic Encephalopathy: A Randomized Clinical Trial. Obstetrical and Gynecological Survey, 2018, 73, 141-143.	0.2	Ο
46	Neurodevelopmental Impairment Among Extremely Preterm Infants in the Neonatal Research Network. Pediatrics, 2018, 141, e20173091.	1.0	167
47	Outcome of Preterm Infants with Transient Cystic Periventricular Leukomalacia on Serial Cranial Imaging Up to Term Equivalent Age. Journal of Pediatrics, 2018, 195, 59-65.e3.	0.9	20
48	Are Structural Magnetic Resonance Imaging and General Movements Assessment Sufficient for Early, Accurate Diagnosis of Cerebral Palsy?. JAMA Pediatrics, 2018, 172, 198.	3.3	9
49	Delivery Room Resuscitation and Short-Term Outcomes in Moderately Preterm Infants. Journal of Pediatrics, 2018, 195, 33-38.e2.	0.9	35
50	Early prediction of cognitive deficits in very preterm infants using functional connectome data in an artificial neural network framework. NeuroImage: Clinical, 2018, 18, 290-297.	1.4	60
51	Admission Temperature and Associated Mortality and Morbidity among Moderately and Extremely Preterm Infants. Journal of Pediatrics, 2018, 192, 53-59.e2.	0.9	82
52	Postnatal Microstructural Developmental Trajectory of Corpus Callosum Subregions and Relationship to Clinical Factors in Very Preterm Infants. Scientific Reports, 2018, 8, 7550.	1.6	16
53	A Novel Transfer Learning Approach to Enhance Deep Neural Network Classification of Brain Functional Connectomes. Frontiers in Neuroscience, 2018, 12, 491.	1.4	114
54	Altered functional network connectivity in preterm infants: antecedents of cognitive and motor impairments?. Brain Structure and Function, 2018, 223, 3665-3680.	1.2	45

#	Article	IF	CITATIONS
55	Optimization of magnetization-prepared rapid gradient echo (MP-RAGE) sequence for neonatal brain MRI. Pediatric Radiology, 2018, 48, 1139-1151.	1.1	6
56	Neurodevelopmental and Behavioral Outcomes in Extremely Premature Neonates With Ventriculomegaly in the Absence of Periventricular-Intraventricular Hemorrhage. JAMA Pediatrics, 2018, 172, 32.	3.3	46
57	Association between Use of Prophylactic Indomethacin and the Risk for Bronchopulmonary Dysplasia in Extremely Preterm Infants. Journal of Pediatrics, 2017, 186, 34-40.e2.	0.9	38
58	Survival and Neurodevelopmental Outcomes among Periviable Infants. New England Journal of Medicine, 2017, 376, 617-628.	13.9	391
59	Effect of Therapeutic Hypothermia Initiated After 6 Hours of Age on Death or Disability Among Newborns With Hypoxic-Ischemic Encephalopathy. JAMA - Journal of the American Medical Association, 2017, 318, 1550.	3.8	212
60	Outcomes of Preterm Infants following Discussions about Withdrawal or Withholding of Life Support. Journal of Pediatrics, 2017, 190, 118-123.e4.	0.9	22
61	Advantages of Bayesian monitoring methods in deciding whether and when to stop a clinical trial: an example of a neonatal cooling trial. Trials, 2016, 17, 335.	0.7	15
62	Early Conventional MRI for Prediction of Neurodevelopmental Impairment in Extremely-Low-Birth-Weight Infants. Neonatology, 2016, 110, 47-54.	0.9	35
63	Neuropathology Associated With Diffuse Excessive High Signal Intensity Abnormalities on Magnetic Resonance Imaging in Very Preterm Infants. Pediatric Neurology, 2016, 65, 78-85.	1.0	20
64	Advanced neuroimaging and its role in predicting neurodevelopmental outcomes in very preterm infants. Seminars in Perinatology, 2016, 40, 530-541.	1.1	65
65	Brain functional network connectivity development in very preterm infants: The first six months. Early Human Development, 2016, 98, 29-35.	0.8	32
66	Neurodevelopmental Outcomes of Extremely Preterm Infants Randomized to Stress Dose Hydrocortisone. PLoS ONE, 2015, 10, e0137051.	1.1	22
67	Aberrant Executive and Frontoparietal Functional Connectivity in Very Preterm Infants With Diffuse White Matter Abnormalities. Pediatric Neurology, 2015, 53, 330-337.	1.0	27
68	Causes and Timing of Death in Extremely Premature Infants from 2000 through 2011. New England Journal of Medicine, 2015, 372, 331-340.	13.9	547
69	Reliability and Repeatability of Quantitative Tractography Methods for Mapping Structural White Matter Connectivity in Preterm and Term Infants at Term-Equivalent Age. PLoS ONE, 2014, 9, e85807.	1.1	32
70	Effect of Depth and Duration of Cooling on Deaths in the NICU Among Neonates With Hypoxic Ischemic Encephalopathy. JAMA - Journal of the American Medical Association, 2014, 312, 2629.	3.8	222
71	Magnetic Resonance Spectroscopy at Term-Equivalent Age in Extremely Preterm Infants: Association With Cognitive and Language Development. Pediatric Neurology, 2014, 51, 53-59.	1.0	39
72	Using Diffusion Tensor Imaging to Probe Mental Status in Legal Cases: Ethical Concerns and Lessons Learned from Other Biotechnologies. AJOB Neuroscience, 2014, 5, 46-47.	0.6	3

#	Article	IF	CITATIONS
73	Role of Diffusion Tensor Imaging as an Independent Predictor of Cognitive and Language Development in Extremely Low-Birth-Weight Infants. American Journal of Neuroradiology, 2014, 35, 790-796.	1.2	25
74	Automatically Quantified Diffuse Excessive High Signal Intensity on MRI Predicts Cognitive Development in Preterm Infants. Pediatric Neurology, 2013, 49, 424-430.	1.0	35
75	Pilot Randomized Trial of Hydrocortisone in Ventilator-Dependent Extremely Preterm Infants: Effects on Regional Brain Volumes. Journal of Pediatrics, 2013, 162, 685-690.e1.	0.9	51
76	Automated detection of white matter signal abnormality using T2 relaxometry: Application to brain segmentation on term MRI in very preterm infants. NeuroImage, 2013, 64, 328-340.	2.1	27
77	Perinatal Clinical Antecedents of White Matter Microstructural Abnormalities on Diffusion Tensor Imaging in Extremely Preterm Infants. PLoS ONE, 2013, 8, e72974.	1.1	47
78	Atlas-Guided Quantification of White Matter Signal Abnormalities on Term-Equivalent Age MRI in Very Preterm Infants: Findings Predict Language and Cognitive Development at Two Years of Age. PLoS ONE, 2013, 8, e85475.	1.1	26
79	Perinatal Factors and Regional Brain Volume Abnormalities at Term in a Cohort of Extremely Low Birth Weight Infants. PLoS ONE, 2013, 8, e62804.	1.1	57
80	Outcome Trajectories in Extremely Preterm Infants. Pediatrics, 2012, 130, e115-e125.	1.0	79
81	The effects of aggressive vs. conservative phototherapy on the brainstem auditory evoked responses of extremely-low-birth-weight infants. Pediatric Research, 2012, 71, 77-84.	1.1	10
82	Factors associated with survival of <27 week infants in an all-referral neonatal intensive care unit. Journal of Neonatal-Perinatal Medicine, 2012, 5, 105-111.	0.4	9
83	The Developmental Trajectory of Brain-Scalp Distance from Birth through Childhood: Implications for Functional Neuroimaging. PLoS ONE, 2011, 6, e24981.	1.1	89
84	Prediction of Death for Extremely Premature Infants in a Population-Based Cohort. Pediatrics, 2010, 126, e644-e650.	1.0	70
85	Evidence-Based Treatment Decisions for Extremely Preterm Newborns. Pediatrics, 2010, 125, 813-816.	1.0	15
86	Comprehensive Brain MRI Segmentation in High Risk Preterm Newborns. PLoS ONE, 2010, 5, e13874.	1.1	37
87	Volumetric and anatomical MRI for hypoxic–ischemic encephalopathy: relationship to hypothermia therapy and neurosensory impairments. Journal of Perinatology, 2009, 29, 143-149.	0.9	23
88	Changes in the PQRST Intervals and Heart Rate Variability Associated with Rewarming in Two Newborns Undergoing Hypothermia Therapy. Neonatology, 2009, 96, 93-95.	0.9	22
89	Intensive Care for Extreme Prematurity — Moving beyond Gestational Age. New England Journal of Medicine, 2008, 358, 1672-1681	13.9	898
90	Effects of Hypoxic-Ischemic Encephalopathy and Whole-Body Hypothermia on Neonatal Auditory Function: A Pilot Study. American Journal of Perinatology, 2008, 25, 435-441.	0.6	13

#	Article	IF	CITATIONS
91	Intensive Care for Extreme Prematurity–Moving Beyond Gestational Age. Obstetrical and Gynecological Survey, 2008, 63, 555-556.	0.2	1
92	Neonatal Brain Volumetric Studies: Regression Analysis and Interpretation: In Reply. Pediatrics, 2007, 119, 1252-1253.	1.0	0
93	Postnatal Dexamethasone Therapy and Cerebral Tissue Volumes in Extremely Low Birth Weight Infants. Pediatrics, 2007, 119, 265-272.	1.0	105
94	Effect of 7-Nitroindazole Sodium on the Cellular Distribution of Neuronal Nitric Oxide Synthase in the Cerebral Cortex of Hypoxic Newborn Piglets. Neurochemical Research, 2006, 31, 899-906.	1.6	1
95	Diffusion tensor imaging of the developing human cerebrum. Journal of Neuroscience Research, 2005, 81, 172-178.	1.3	116
96	The Effects of Early Lead Exposure on the Brains of Adult Rhesus Monkeys: A Volumetric MRI Study. Toxicological Sciences, 2005, 85, 963-975.	1.4	13
97	Nitric Oxide–Mediated Modification of the Clycine Binding Site of the NMDA Receptor During Hypoxia in the Cerebral Cortex of the Newborn Piglet. Neurochemical Research, 2004, 29, 455-459.	1.6	7
98	Hypoxia-induced caspase-3 activation and DNA fragmentation in cortical neurons of newborn piglets: role of nitric oxide. Neurochemical Research, 2003, 28, 1351-1357.	1.6	28
99	Aberrant Localization of the Neuronal Class III β-Tubulin in Astrocytomas. Archives of Pathology and Laboratory Medicine, 2001, 125, 613-624.	1.2	87