
Mohamed Kamel Hadj-Kali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3053725/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solubility of CO2 in deep eutectic solvents: Experiments and modelling using the Peng–Robinson equation of state. Chemical Engineering Research and Design, 2014, 92, 1898-1906.	5.6	165
2	Separation of BTEX aromatics from n-octane using a (tetrabutylammonium bromide + sulfolane) deep eutectic solvent – experiments and COSMO-RS prediction. RSC Advances, 2014, 4, 17597.	3.6	117
3	Efficient removal of benzene from cyclohexane-benzene mixtures using deep eutectic solvents – COSMO-RS screening and experimental validation. Journal of Chemical Thermodynamics, 2017, 104, 33-44.	2.0	114
4	Deep eutectic solvents: designer fluids for chemical processes. Journal of Chemical Technology and Biotechnology, 2018, 93, 945-958.	3.2	103
5	Removal of Thiophene from Mixtures with <i>n</i> -Heptane by Selective Extraction Using Deep Eutectic Solvents. Industrial & Engineering Chemistry Research, 2016, 55, 8415-8423.	3.7	98
6	Evaluating the Performance of Deep Eutectic Solvents for Use in Extractive Denitrification of Liquid Fuels by the Conductor-like Screening Model for Real Solvents. Journal of Chemical & Engineering Data, 2014, 59, 3470-3487.	1.9	97
7	Phase equilibria of toluene/heptane with tetrabutylphosphonium bromide based deep eutectic solvents for the potential use in the separation of aromatics from naphtha. Fluid Phase Equilibria, 2012, 333, 47-54.	2.5	89
8	Extractive denitrogenation of diesel fuel using ammonium- and phosphonium-based deep eutectic solvents. Journal of Chemical Thermodynamics, 2016, 95, 164-173.	2.0	86
9	Application of deep eutectic solvents and their individual constituents as surfactants for enhanced oil recovery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 487, 221-231.	4.7	63
10	Phase equilibria of toluene/heptane with deep eutectic solvents based on ethyltriphenylphosphonium iodide for the potential use in the separation of aromatics from naphtha. Journal of Chemical Thermodynamics, 2013, 65, 138-149.	2.0	59
11	Separation of aromatic and aliphatic hydrocarbons using deep eutectic solvents: A critical review. Fluid Phase Equilibria, 2017, 448, 152-167.	2.5	59
12	Coupling the capabilities of different complexing agents into deep eutectic solvents to enhance the separation of aromatics from aliphatics. Journal of Chemical Thermodynamics, 2015, 84, 67-75.	2.0	56
13	Extraction of nitrogen compounds from diesel fuel using imidazolium- and pyridinium-based ionic liquids: Experiments, COSMO-RS prediction and NRTL correlation. Fluid Phase Equilibria, 2015, 405, 55-67.	2.5	54
14	Analysis of operating conditions for CO 2 capturing process using deep eutectic solvents. International Journal of Greenhouse Gas Control, 2016, 47, 342-350.	4.6	45
15	Liquid-liquid separation of azeotropic mixtures of ethanol/alkanes using deep eutectic solvents: COSMO-RS prediction and experimental validation. Fluid Phase Equilibria, 2017, 448, 105-115.	2.5	43
16	Ionic liquids for the separation of benzene and cyclohexane – COSMO-RS screening and experimental validation. Journal of Molecular Liquids, 2018, 266, 51-61.	4.9	43
17	Solubility of Sodium Salts in Ammonium-Based Deep Eutectic Solvents. Journal of Chemical & Engineering Data, 2013, 58, 2154-2162.	1.9	42
18	Fitting of experimental viscosity to temperature data for deep eutectic solvents. Journal of Molecular Liquids, 2020, 310, 113127.	4.9	42

#	Article	IF	CITATIONS
19	Utilization of Deep Eutectic Solvents to Reduce the Release of Hazardous Gases to the Atmosphere: A Critical Review. Molecules, 2021, 26, 75.	3.8	40
20	Multicomponent extraction of aromatics and heteroaromatics from diesel using acidic eutectic solvents: Experimental and COSMO-RS predictions. Journal of Molecular Liquids, 2021, 336, 116575.	4.9	37
21	Physicochemical properties of piperidinium, ammonium, pyrrolidinium and morpholinium cations based ionic liquids paired with bis(trifluoromethylsulfonyl)imide anion. Fluid Phase Equilibria, 2016, 427, 18-26.	2.5	34
22	Extraction of pyridine from n-alkane mixtures using methyltriphenylphosphonium bromide-based deep eutectic solvents as extractive denitrogenation agents. Fluid Phase Equilibria, 2020, 517, 112622.	2.5	31
23	Extraction of nitrogen compounds from model fuel using 1-ethyl-3-methylimidazolium methanesulfonate. Separation and Purification Technology, 2018, 196, 61-70.	7.9	28
24	Solubility of Sodium Chloride in Ionic Liquids. Industrial & Engineering Chemistry Research, 2013, 52, 11488-11493.	3.7	25
25	Prediction of CO2 solubility in ionic liquids using the PSRK model. Journal of Supercritical Fluids, 2015, 100, 184-193.	3.2	25
26	Liquid–Liquid Equilibria for Binary Azeotrope Mixtures of Benzene and Alcohols Using Choline Chloride-Based Deep Eutectic Solvents. Journal of Chemical & Engineering Data, 2018, 63, 613-624.	1.9	23
27	Bunsen section thermodynamic model for hydrogen production by the sulfur–iodine cycle. International Journal of Hydrogen Energy, 2009, 34, 6625-6635.	7.1	22
28	Measurements and prediction of ternary liquid–liquid equilibria for mixtures of ILÂ+Âsulfur compoundÂ+Âhexadecane. Fluid Phase Equilibria, 2016, 421, 16-23.	2.5	22
29	Modeling of CO ₂ Solubility in Selected Imidazolium-Based Ionic Liquids. Chemical Engineering Communications, 2017, 204, 205-215.	2.6	22
30	HIx system thermodynamic model for hydrogen production by the Sulfur–Iodine cycle. International Journal of Hydrogen Energy, 2009, 34, 1696-1709.	7.1	20
31	Extractive separation of benzene and cyclohexane using binary mixtures of ionic liquids. Journal of Molecular Liquids, 2019, 285, 716-726.	4.9	20
32	Investigating the solubility of chlorophenols in hydrophobic ionic liquids. Journal of Chemical Thermodynamics, 2019, 135, 97-106.	2.0	19
33	Liquid-liquid equilibria data for the separation of ethylbenzene/styrene mixtures using ammonium-based deep eutectic solvents. Journal of Chemical Thermodynamics, 2019, 135, 296-304.	2.0	18
34	Screening of ionic liquids for gas separation using COSMO-RS and comparison between performances of ionic liquids and aqueous alkanolamine solutions. Chemical Engineering Communications, 2020, 207, 1264-1277.	2.6	17
35	Characterization of tetraethylene glycol-based deep eutectic solvents and their potential application for dissolving unsaturated fatty acids. Journal of Molecular Liquids, 2020, 312, 113284.	4.9	17
36	The subtle but substantial distinction between ammonium- and phosphonium-based deep eutectic solvents. Journal of Molecular Liquids, 2021, 332, 115838.	4.9	17

#	Article	IF	CITATIONS
37	Solubility of sodium chloride in phosphonium-based deep eutectic solvents. Journal of Molecular Liquids, 2014, 199, 344-351.	4.9	14
38	Soft-SAFT modeling of vapor–liquid equilibria of nitriles and their mixtures. Fluid Phase Equilibria, 2010, 289, 191-200.	2.5	13
39	Characterization of Ternary Blends of Vegetable Oils with Optimal ω-6/ω-3 Fatty Acid Ratios. Journal of Oleo Science, 2019, 68, 1041-1049.	1.4	13
40	Polyethylene glycol-based deep eutectic solvents as a novel agent for natural gas sweetening. PLoS ONE, 2020, 15, e0239493.	2.5	13
41	Application of deep eutectic solvent as novel co-solvent for oil extraction from flaxseed using sonoenergy. Industrial Crops and Products, 2022, 176, 114242.	5.2	13
42	Determination of cost-effective operating condition for CO2 capturing using 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid. Korean Journal of Chemical Engineering, 2013, 30, 2068-2077.	2.7	12
43	Solubility of Halogenated Hydrocarbons in Hydrophobic Ionic Liquids: Experimental Study and COSMO-RS Prediction. Journal of Chemical & Engineering Data, 2015, 60, 2926-2936.	1.9	12
44	Synthesis, Characterization, and Antimicrobial Toxicity Study of Dicyanamide-Based Ionic Liquids and Their Application to Liquid–Liquid Extraction. Journal of Chemical & Engineering Data, 2020, 65, 34-42.	1.9	7
45	Performance of p-Toluenesulfonic Acid–Based Deep Eutectic Solvent in Denitrogenation: Computational Screening and Experimental Validation. Molecules, 2020, 25, 5093.	3.8	7
46	Electroreduction of CO ₂ and Quantification in New Transition-Metal-Based Deep Eutectic Solvents Using Single-Atom Ag Electrocatalyst. ACS Omega, 2022, 7, 14102-14112.	3.5	6
47	Optimized intermolecular potential for nitriles based on Anisotropic United Atoms model. Journal of Molecular Modeling, 2008, 14, 571-580.	1.8	5
48	New Vapor–Liquid–Liquid Equilibrium Data for Ethane and Propane in Alkanolamine Aqueous Solutions. Journal of Chemical & Engineering Data, 2013, 58, 2100-2109.	1.9	5
49	Separation of ethylbenzene and n-octane using deep eutectic solvents. Green Processing and Synthesis, 2015, 4, .	3.4	5
50	Liquid-liquid separation of n-hexane/1-hexene and cyclohexane/cyclohexene using deep eutectic solvents. Journal of Molecular Liquids, 2021, 344, 117776.	4.9	5
51	Optimization of the Oxidative Coupling of Methane Process for Ethylene Production. Processes, 2022, 10, 1085.	2.8	5
52	Using Ionic Liquids for the Separation of Carbohydrates. International Journal of Chemical Engineering and Applications (IJCEA), 2015, 6, 417-421.	0.3	4
53	Separation of Benzene and Cyclohexane Using Eutectic Solvents with Aromatic Structure. Molecules, 2022, 27, 4041.	3.8	4
54	Modeling the phase equilibria of nitriles by the soft-SAFT Equation of State. Computer Aided Chemical Engineering, 2008, 25, 739-744.	0.5	3

#	Article	IF	CITATIONS
55	Modeling of gaseous hydrocarbons solubility in aqueous-amine systems by VTPR model. Fluid Phase Equilibria, 2016, 427, 539-548.	2.5	3
56	Solid–Liquid Equilibria for Biphenyl + n-Tetracosane Binary Mixtures and n-Tetracosane + Dibenzofuran + Biphenyl Ternary Mixtures: Experimental Data and Prediction w UNIFAC Models. International Journal of Thermophysics, 2022, 43, .	vith1	3
57	Application of molecular simulation in the gibbs ensemble to predict liquid-vapor equilibrium curve of acetonitrile. Computer Aided Chemical Engineering, 2003, 14, 653-658.	0.5	2
58	New Vapor–Liquid–Liquid Equilibrium Solubility Data for iso-Butane, <i>n</i> -Butane, <i>n</i> -Pentane, and <i>n</i> -Hexane in Alkanolamine Aqueous Solutions. Journal of Chemical & Engineering Data, 2014, 59, 1673-1684.	1.9	2
59	Selective extraction of benzene from benzene–cyclohexane mixture using 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid. AIP Conference Proceedings, 2019, , .	0.4	2
60	Understanding and enhancing the direct contact membrane distillation performance by modified heat transfer correlation. Canadian Journal of Chemical Engineering, 2020, 98, 2599-2617.	1.7	2
61	Solid-liquid equilibria for dibenzofuran or XantheneÂ+ÂHeavy Hydrocarbons: Experimental measurements and modelling. Journal of Molecular Liquids, 2021, 335, 116536.	4.9	2
62	Simultaneous Extraction of Sulfur and Nitrogen Compounds from Model Diesel Fuel Using Neoteric Green Solvents. ACS Omega, 2021, 6, 22317-22332.	3.5	2
63	Natural and low-cost deep eutectic solvent for soap removal from crude biodiesel using low stirring extraction system. Biomass Conversion and Biorefinery, 0, , 1.	4.6	2
64	AZEOTROPE PREDICTION BY MONTE CARLO MOLECULAR SIMULATION. Chemical Engineering Communications, 2012, 199, 673-688.	2.6	1
65	How to Manage Complexity in Phase Equilibria Modeling? Application to the Bunsen Reaction. Computer Aided Chemical Engineering, 2009, , 333-338.	0.5	0
66	Extractive separation of benzene and cyclohexane using 1-butyl-3-methylimidazolium acetate. IOP Conference Series: Materials Science and Engineering, 2018, 458, 012067.	0.6	0