Ji-Sang Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3053674/publications.pdf Version: 2024-02-01

186265 98798 4,686 72 28 67 h-index citations g-index papers 75 75 75 6908 docs citations times ranked citing authors all docs

IL-SANC DADK

#	Article	IF	CITATIONS
1	Hybrid density functional theory calculation of orthorhombic CsPbI3â^'3Br3 and CsPbBr3â^'3Cl3. Current Applied Physics, 2022, 36, 93-96.	2.4	2
2	Hydrothermal Synthesis in Gap: Conformal Deposition of Textured Hematite Thin Films for Efficient Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2022, , .	8.0	10
3	Cost-effective calculation of defects in Si using hybrid density functional with downsampled reciprocal grids. Current Applied Physics, 2022, 39, 51-55.	2.4	1
4	Stabilization and Self-Passivation of Grain Boundaries in Halide Perovskite by Rigid Body Translation. Journal of Physical Chemistry Letters, 2022, 13, 4628-4633.	4.6	5
5	Search of chalcopyrite materials based on hybrid density functional theory calculation. Journal of Physics Communications, 2022, 6, 065001.	1.2	1
6	Modeling Grain Boundaries in Polycrystalline Halide Perovskite Solar Cells. Annual Review of Condensed Matter Physics, 2021, 12, 95-109.	14.5	25
7	Effect of chemical substitution on polytypes and extended defects in chalcopyrites: A density functional theory study. Journal of Applied Physics, 2021, 129, 025703.	2.5	5
8	Comparison study of exchange-correlation functionals on prediction of ground states and structural properties. Current Applied Physics, 2021, 22, 61-64.	2.4	7
9	Stability and electronic structure of stacking faults and polytypes in \$\${hbox {ZnSnN}_2}\$\$, \$\${hbox {ZnGeN}_2}\$\$, and \$\${hbox {ZnSiN}_2}\$\$. Journal of the Korean Physical Society, 2021, 79, 309-314.	0.7	1
10	Screening of II-IV-V2 Materials for Photovoltaic Applications Based on Density Functional Theory Calculations. Crystals, 2021, 11, 883.	2.2	1
11	Cost-Effective High-Throughput Calculation Based on Hybrid Density Functional Theory: Application to Cubic, Double, and Vacancy-Ordered Halide Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 7885-7891.	4.6	8
12	Cost-Effective Hybrid Density Functional Theory Calculation of Three-Dimensional Band Structure and Search of Band Edge Positions. Journal of Physical Chemistry A, 2021, 125, 8514-8518.	2.5	5
13	Evolutionary exploration of polytypism in lead halide perovskites. Chemical Science, 2021, 12, 12165-12173.	7.4	11
14	Sustainable lead management in halide perovskite solar cells. Nature Sustainability, 2020, 3, 1044-1051.	23.7	87
15	The Holey Grail of Transparent Electronics. Matter, 2020, 3, 604-606.	10.0	2
16	Hexagonal Stacking Faults Act as Hole-Blocking Layers in Lead Halide Perovskites. ACS Energy Letters, 2020, 5, 2231-2233.	17.4	12
17	Quick-start guide for first-principles modelling of point defects in crystalline materials. JPhys Energy, 2020, 2, 036001.	5.3	22
18	Defect Energetics in Pseudo-Cubic Mixed Halide Lead Perovskites from First-Principles. Journal of Physical Chemistry C, 2020, 124, 16729-16738.	3.1	19

JI-SANG PARK

#	Article	IF	CITATIONS
19	Examination of high-throughput hybrid calculations using coarser reciprocal space meshes. Current Applied Physics, 2020, 20, 379-383.	2.4	10
20	Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites. Nature, 2020, 580, 360-366.	27.8	255
21	Calculation of the Stacking Fault Energy by Using the Anisotropic Next-Nearest Neighbor Ising Model. New Physics: Sae Mulli, 2020, 70, 630-636.	0.1	2
22	Intrinsic doping limit and defect-assisted luminescence in Cs ₄ PbBr ₆ . Journal of Materials Chemistry A, 2019, 7, 20254-20261.	10.3	48
23	Crystal Engineering of Bi ₂ WO ₆ to Polar Aurivillius-Phase Oxyhalides. Journal of Physical Chemistry C, 2019, 123, 29155-29161.	3.1	12
24	In situ observation of picosecond polaron self-localisation in α-Fe2O3 photoelectrochemical cells. Nature Communications, 2019, 10, 3962.	12.8	93
25	Lone-pair effect on carrier capture in Cu ₂ ZnSnS ₄ solar cells. Journal of Materials Chemistry A, 2019, 7, 2686-2693.	10.3	55
26	Embrace your defects. Nature Energy, 2019, 4, 95-96.	39.5	13
27	Effect of oxygen deficiency on the excited state kinetics of WO ₃ and implications for photocatalysis. Chemical Science, 2019, 10, 5667-5677.	7.4	97
28	Accumulation of Deep Traps at Grain Boundaries in Halide Perovskites. ACS Energy Letters, 2019, 4, 1321-1327.	17.4	117
29	Comprehensive Computational Study of Partial Lead Substitution in Methylammonium Lead Bromide. Chemistry of Materials, 2019, 31, 3599-3612.	6.7	37
30	Enhanced Charge Transport in 2D Perovskites via Fluorination of Organic Cation. Journal of the American Chemical Society, 2019, 141, 5972-5979.	13.7	274
31	Quick-start guide for first-principles modelling of semiconductor interfaces. JPhys Energy, 2019, 1, 016001.	5.3	12
32	Stabilization and self-passivation of symmetrical grain boundaries by mirror symmetry breaking. Physical Review Materials, 2019, 3, .	2.4	7
33	Identification of Killer Defects in Kesterite Thin-Film Solar Cells. ACS Energy Letters, 2018, 3, 496-500.	17.4	130
34	Mechanism of Na accumulation at extended defects in Si from first-principles. Journal of Applied Physics, 2018, 123, 161560.	2.5	12
35	Open-circuit voltage deficit in Cu2ZnSnS4 solar cells by interface bandgap narrowing. Applied Physics Letters, 2018, 113, 212103.	3.3	16
36	First-principles Study of Intrinsic and Extrinsic Point Defects in Lead-Based Hybrid Perovskites. , 2018, ,		3

JI-SANG PARK

#	Article	IF	CITATIONS
37	Stability and electronic properties of planar defects in quaternary I2-II-IV-VI4 semiconductors. Journal of Applied Physics, 2018, 124, 165705.	2.5	5
38	Role of electron-phonon coupling and thermal expansion on band gaps, carrier mobility, and interfacial offsets in kesterite thin-film solar cells. Applied Physics Letters, 2018, 112, .	3.3	19
39	Opposing effects of stacking faults and antisite domain boundaries on the conduction band edge in kesterite quaternary semiconductors. Physical Review Materials, 2018, 2, .	2.4	15
40	Transition metal-substituted lead halide perovskite absorbers. Journal of Materials Chemistry A, 2017, 5, 3578-3588.	10.3	62
41	300% Enhancement of Carrier Mobility in Uniaxialâ€Oriented Perovskite Films Formed by Topotacticâ€Oriented Attachment. Advanced Materials, 2017, 29, 1606831.	21.0	120
42	The Role of Water in the Reversible Optoelectronic Degradation of Hybrid Perovskites at Low Pressure. Journal of Physical Chemistry C, 2017, 121, 25659-25665.	3.1	19
43	Nonisovalent Si-III-V and Si-II-VI alloys: Covalent, ionic, and mixed phases. Physical Review B, 2017, 96, .	3.2	2
44	Polymerization of defect states at dislocation cores in InAs. Journal of Applied Physics, 2016, 119, 045706.	2.5	8
45	Wild band edges: The role of bandgap grading and band-edge fluctuations in high-efficiency chalcogenide devices. , 2016, , .		11
46	First-principles study of roles of Cu and Cl in polycrystalline CdTe. Journal of Applied Physics, 2016, 119, .	2.5	44
47	Effect of intermixing at CdS/CdTe interface on defect properties. Applied Physics Letters, 2016, 109, 042105.	3.3	9
48	Fast self-diffusion of ions in CH ₃ NH ₃ PbI ₃ : the interstiticaly mechanism. Journal of Materials Chemistry A, 2016, 4, 13105-13112.	10.3	74
49	Naâ€Diffusion Enhanced pâ€ŧype Conductivity in Cu(In,Ga)Se ₂ : A New Mechanism for Efficient Doping in Semiconductors. Advanced Energy Materials, 2016, 6, 1601191.	19.5	115
50	Review on first-principles study of defect properties of CdTe as a solar cell absorber. Semiconductor Science and Technology, 2016, 31, 083002.	2.0	109
51	Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys. Chemistry of Materials, 2016, 28, 284-292.	6.7	1,606
52	Electronic Structure of Oxygen Interstitial Defects in Amorphous In-Ga-Zn-O Semiconductors and Implications for Device Behavior. Physical Review Applied, 2015, 3, .	3.8	58
53	Electronic Structure and Optical Properties of <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi> Cu </mml:mi> </mml:mrow> <mml:mrow> <mm First-Principles Calculations and Vacuum-Ultraviolet Spectroscopic Ellipsometric Studies. Physical</mm </mml:mrow></mml:msub></mml:mrow></mmi:math 	ll:n an e 2 <td>nn19mn></td>	n n19 mn>
54	Review Applied, 2015, 4, . Self-regulation of charged defect compensation and formation energy pinning in semiconductors. Scientific Reports, 2015, 5, 16977.	3.3	56

JI-SANG PARK

#	Article	IF	CITATIONS
55	Engineering Solar Cell Absorbers by Exploring the Band Alignment and Defect Disparity: The Case of Cu― and Agâ€Based Kesterite Compounds. Advanced Functional Materials, 2015, 25, 6733-6743.	14.9	284
56	Period-doubling reconstructions of semiconductor partial dislocations. NPG Asia Materials, 2015, 7, e216-e216.	7.9	12
57	Ordering-induced direct-to-indirect band gap transition in multication semiconductor compounds. Physical Review B, 2015, 91, .	3.2	20
58	Effects of deposition termination on Cu2ZnSnSe4 device characteristics. Thin Solid Films, 2015, 582, 184-187.	1.8	29
59	First-principles multiple-barrier diffusion theory: The case study of interstitial diffusion in CdTe. Physical Review B, 2015, 91, .	3.2	33
60	Stability and electronic structure of the low- <i>Ĵ£</i> grain boundaries in CdTe: a density functional study. New Journal of Physics, 2015, 17, 013027.	2.9	31
61	Electronic Structure and Optical Properties of î±-CH ₃ NH ₃ PbBr ₃ Perovskite Single Crystal. Journal of Physical Chemistry Letters, 2015, 6, 4304-4308.	4.6	136
62	Enhanced p-type dopability of P and As in CdTe using non-equilibrium thermal processing. Journal of Applied Physics, 2015, 118, .	2.5	60
63	Defect properties of Sb- and Bi-doped CuInSe2: The effect of the deep lone-pair <i>s</i> states. Applied Physics Letters, 2014, 105, .	3.3	21
64	Finite-size supercell correction scheme for charged defects in one-dimensional systems. Physical Review B, 2014, 90, .	3.2	4
65	Tuning the Fermi level beyond the equilibrium doping limit through quenching: The case of CdTe. Physical Review B, 2014, 90, .	3.2	66
66	Effect of hydrogen incorporation on the negative bias illumination stress instability in amorphous In-Ga-Zn-O thin-film-transistors. Journal of Applied Physics, 2013, 113, .	2.5	62
67	Site preference of Mg acceptors and improvement of p-type doping efficiency in nitride alloys. Journal of Physics Condensed Matter, 2013, 25, 245801.	1.8	1
68	Diffusion and Stability of Hydrogen in Mg-Doped GaN: A Density Functional Study. Applied Physics Express, 2012, 5, 065601.	2.4	10
69	Stability and Segregation of B and P Dopants in Si/SiO ₂ Core–Shell Nanowires. Nano Letters, 2012, 12, 5068-5073.	9.1	19
70	Stability of Donor-Pair Defects in Si _{1–<i>x</i>} Ge _{<i>x</i>} Alloy Nanowires. Journal of Physical Chemistry C, 2011, 115, 10345-10350.	3.1	7
71	Hole Gas Induced by Defects in Geâ^•Si Core-Shell Nanowires. , 2011, , .		2
72	Defects Responsible for the Hole Gas in Ge/Si Coreâ^'Shell Nanowires. Nano Letters, 2010, 10, 116-121.	9.1	49