George K Gittes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3053576/publications.pdf

Version: 2024-02-01

236612 214527 2,472 48 25 47 citations h-index g-index papers 49 49 49 3368 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Polarized macrophages promote gestational beta cell growth through extracellular signalâ€regulated kinase 5 signalling. Diabetes, Obesity and Metabolism, 2022, 24, 1721-1733.	2.2	3
2	Glucagon Resistance and Decreased Susceptibility to Diabetes in a Model of Chronic Hyperglucagonemia. Diabetes, 2021, 70, 477-491.	0.3	13
3	Insulin-positive ductal cells do not migrate into preexisting islets during pregnancy. Experimental and Molecular Medicine, 2021, 53, 605-614.	3.2	2
4	Conversion of \hat{l}_{\pm} -Cells to \hat{l}^2 -Cells in the Postpartum Mouse Pancreas Involves Lgr5 Progeny. Diabetes, 2021, 70, 1508-1518.	0.3	5
5	Mechanisms of Impaired Lung Development and Ciliation in Mannosidase-1-Alpha-2 (Man1a2) Mutants. Frontiers in Physiology, 2021, 12, 658518.	1.3	2
6	Chitinase-3-like 1 protein complexes modulate macrophage-mediated immune suppression in glioblastoma. Journal of Clinical Investigation, 2021, 131 , .	3.9	49
7	\hat{l}^2 -cell Smad2 null mice have improved \hat{l}^2 -cell function and are protected from diet-induced hyperglycemia. Journal of Biological Chemistry, 2021, 297, 101235.	1.6	5
8	Pancreatic Duct Infusion: An Effective and Selective Method of Drug and Viral Delivery. Journal of Visualized Experiments, 2021, , .	0.2	0
9	Alpha-to-beta cell trans-differentiation for treatment of diabetes. Biochemical Society Transactions, 2021, 49, 2539-2548.	1.6	8
10	Biliary-Atresia-Associated Mannosidase-1-Alpha-2 Gene Regulates Biliary and Ciliary Morphogenesis and Laterality. Frontiers in Physiology, 2020, 11, 538701.	1.3	13
11	Placental growth factor in beta cells plays an essential role in gestational beta-cell growth. BMJ Open Diabetes Research and Care, 2020, 8, e000921.	1.2	12
12	SMAD7 enhances adult \hat{I}^2 -cell proliferation without significantly affecting \hat{I}^2 -cell function in mice. Journal of Biological Chemistry, 2020, 295, 4858-4869.	1.6	12
13	Cellular autophagy in \hat{l}_{\pm} cells plays a role in the maintenance of islet architecture. Journal of the Endocrine Society, 2019, 3, 1979-1992.	0.1	2
14	Prolactin Promotes Fibrosis and Pancreatic Cancer Progression. Cancer Research, 2019, 79, 5316-5327.	0.4	36
15	Evidence of a developmental origin of beta-cell heterogeneity using a dual lineage tracing technology. Development (Cambridge), 2019, 146, .	1.2	11
16	Simplified Purification of AAV and Delivery to the Pancreas by Intraductal Administration. Methods in Molecular Biology, 2019, 1950, 373-387.	0.4	6
17	Endogenous Reprogramming of Alpha Cells into Beta Cells, Induced by Viral Gene Therapy, Reverses Autoimmune Diabetes. Cell Stem Cell, 2018, 22, 78-90.e4.	5. 2	138
18	Islet α-cell Inflammation Induced By NF-κB inducing kinase (NIK) Leads to Hypoglycemia, Pancreatitis, Growth Retardation, and Postnatal Death in Mice. Theranostics, 2018, 8, 5960-5971.	4.6	24

#	Article	IF	CITATIONS
19	Forkhead Box Protein 1 (FoxO1) Inhibits Accelerated \hat{l}^2 Cell Aging in Pancreas-specific SMAD7 Mutant Mice. Journal of Biological Chemistry, 2017, 292, 3456-3465.	1.6	22
20	Gcg CreERT2 knockin mice as a tool for genetic manipulation in pancreatic alpha cells. Diabetologia, 2017, 60, 2399-2408.	2.9	27
21	SMAD3/Stat3 Signaling Mediates β-Cell Epithelial-Mesenchymal Transition in Chronic Pancreatitis–Related Diabetes. Diabetes, 2017, 66, 2646-2658.	0.3	31
22	Targeted Inhibition of Pancreatic Acinar Cell Calcineurin Is a Novel Strategy to Prevent Post-ERCP Pancreatitis. Cellular and Molecular Gastroenterology and Hepatology, 2017, 3, 119-128.	2.3	25
23	Autophagy protects pancreatic beta cell mass and function in the setting of a high-fat and high-glucose diet. Scientific Reports, 2017, 7, 16348.	1.6	57
24	Loss of mTORC1 signaling alters pancreatic $\hat{l}\pm$ cell mass and impairs glucagon secretion. Journal of Clinical Investigation, 2017, 127, 4379-4393.	3.9	44
25	PNA lectin for purifying mouse acinar cells from the inflamed pancreas. Scientific Reports, 2016, 6, 21127.	1.6	8
26	Transient Suppression of $TGF\hat{l}^2$ Receptor Signaling Facilitates Human Islet Transplantation. Endocrinology, 2016, 157, 1348-1356.	1.4	29
27	A synopsis of factors regulating beta cell development and beta cell mass. Cellular and Molecular Life Sciences, 2016, 73, 3623-3637.	2.4	9
28	Epidermal Growth Factor Receptor Signaling Regulates \hat{l}^2 Cell Proliferation in Adult Mice. Journal of Biological Chemistry, 2016, 291, 22630-22637.	1.6	30
29	Multiple roles for $TGF\hat{l}^2$ receptor type II in regulating the pancreatic response in acute pancreatitis. Journal of Pathology, 2016, 238, 603-605.	2.1	5
30	Effect of Hypertriglyceridemia on Beta Cell Mass and Function in ApoC3 Transgenic Mice. Journal of Biological Chemistry, 2016, 291, 14695-14705.	1.6	11
31	FoxO1 Plays an Important Role in Regulating \hat{I}^2 -Cell Compensation for Insulin Resistance in Male Mice. Endocrinology, 2016, 157, 1055-1070.	1.4	60
32	Peroxisome Proliferator-activated Receptor- \hat{l}^3 Coactivator $1-\hat{l}_\pm$ (PGC1 \hat{l}_\pm) Protects against Experimental Murine Colitis. Journal of Biological Chemistry, 2016, 291, 10184-10200.	1.6	65
33	Intraislet Pancreatic Ducts Can Give Rise to Insulin-Positive Cells. Endocrinology, 2016, 157, 166-175.	1.4	42
34	Concise Review: New Insights Into the Role of Macrophages in \hat{I}^2 -Cell Proliferation. Stem Cells Translational Medicine, 2015, 4, 655-658.	1.6	37
35	The Role of ARF6 in Biliary Atresia. PLoS ONE, 2015, 10, e0138381.	1.1	66
36	Renal blood flow and oxygenation drive nephron progenitor differentiation. American Journal of Physiology - Renal Physiology, 2014, 307, F337-F345.	1.3	25

#	Article	IF	CITATIONS
37	M2 macrophages promote beta-cell proliferation by up-regulation of SMAD7. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1211-20.	3.3	267
38	A Smad Signaling Network Regulates Islet Cell Proliferation. Diabetes, 2014, 63, 224-236.	0.3	64
39	Pancreatic cell tracing, lineage tagging and targeted genetic manipulations in multiple cell types using pancreatic ductal infusion of adeno-associated viral vectors and/or cell-tagging dyes. Nature Protocols, 2014, 9, 2719-2724.	5.5	64
40	Activated Macrophages Create Lineage-Specific Microenvironments for Pancreatic Acinar- and \hat{l}^2 -Cell Regeneration in Mice. Gastroenterology, 2014, 147, 1106-1118.e11.	0.6	87
41	Neurogenin3 Activation Is Not Sufficient to Direct Duct-to-Beta Cell Transdifferentiation in the Adult Pancreas. Journal of Biological Chemistry, 2013, 288, 25297-25308.	1.6	38
42	TGFβ Receptor Signaling Is Essential for Inflammation-Induced but Not β-Cell Workload–Induced β-Cell Proliferation. Diabetes, 2013, 62, 1217-1226.	0.3	97
43	Hypoglycemia Reduces Vascular Endothelial Growth Factor A Production by Pancreatic Beta Cells as a Regulator of Beta Cell Mass. Journal of Biological Chemistry, 2013, 288, 8636-8646.	1.6	85
44	No evidence for \hat{l}^2 cell neogenesis in murine adult pancreas. Journal of Clinical Investigation, 2013, 123, 2207-2217.	3.9	169
45	Intestinal Epithelial Toll-Like Receptor 4 Regulates Goblet Cell Development and Is Required for Necrotizing Enterocolitis in Mice. Gastroenterology, 2012, 143, 708-718.e5.	0.6	250
46	Developmental biology of the pancreas: A comprehensive review. Developmental Biology, 2009, 326, 4-35.	0.9	388
47	The surgeon-scientist in a new biomedical research era. Surgery, 2006, 140, 123-131.	1.0	28
48	Islet Development: When Glucagon's Gone. Endocrinology, 2006, 147, 3993-3994.	1.4	1