Naixiang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3053499/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PEDOT:PSS for Flexible and Stretchable Electronics: Modifications, Strategies, and Applications. Advanced Science, 2019, 6, 1900813.	11.2	563
2	Antioxidant Grain Passivation for Air‣table Tinâ€Based Perovskite Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 806-810.	13.8	369
3	Functionalized Organic Thin Film Transistors for Biosensing. Accounts of Chemical Research, 2019, 52, 277-287.	15.6	240
4	Highly Sensitive Detection of Protein Biomarkers with Organic Electrochemical Transistors. Advanced Materials, 2017, 29, 1703787.	21.0	152
5	Fabric Organic Electrochemical Transistors for Biosensors. Advanced Materials, 2018, 30, e1800051.	21.0	137
6	Highly Air-Stable Tin-Based Perovskite Solar Cells through Grain-Surface Protection by Gallic Acid. ACS Energy Letters, 2020, 5, 1741-1749.	17.4	126
7	Snâ€Based Perovskite for Highly Sensitive Photodetectors. Advanced Science, 2019, 6, 1900751.	11.2	118
8	Ultrafast, sensitive, and portable detection of COVID-19 IgG using flexible organic electrochemical transistors. Science Advances, 2021, 7, eabg8387.	10.3	111
9	Enhanced performance of tin-based perovskite solar cells induced by an ammonium hypophosphite additive. Journal of Materials Chemistry A, 2019, 7, 26580-26585.	10.3	98
10	Highâ€Performance Tin–Lead Mixedâ€Perovskite Solar Cells with Vertical Compositional Gradient. Advanced Materials, 2022, 34, e2107729.	21.0	88
11	Highly Conductive Stretchable Allâ€Plastic Electrodes Using a Novel Dippingâ€Embedded Transfer Method for Highâ€Performance Wearable Sensors and Semitransparent Organic Solar Cells. Advanced Electronic Materials, 2017, 3, 1600471.	5.1	62
12	2D materials for conducting holes from grain boundaries in perovskite solar cells. Light: Science and Applications, 2021, 10, 68.	16.6	59
13	Highly sensitive, durable and stretchable plastic strain sensors using sandwich structures of PEDOT:PSS and an elastomer. Materials Chemistry Frontiers, 2018, 2, 355-361.	5.9	58
14	Organic Electrochemical Transistors for the Detection of Cell Surface Glycans. ACS Applied Materials & Interfaces, 2018, 10, 18470-18477.	8.0	58
15	Dynamically Reconfigurable Shortâ€Term Synapse with Millivolt Stimulus Resolution Based on Organic Electrochemical Transistors. Advanced Materials Technologies, 2019, 4, 1900471.	5.8	57
16	Gradient 2D/3D Perovskite Films Prepared by Hot asting for Sensitive Photodetectors. Advanced Science, 2020, 7, 2000776.	11.2	56
17	Organic electrochemical transistor arrays for real-time mapping of evoked neurotransmitter release in vivo. ELife, 2020, 9, .	6.0	50
18	AC Measurements Using Organic Electrochemical Transistors for Accurate Sensing. ACS Applied Materials & Interfaces, 2018, 10, 25834-25840.	8.0	46

NAIXIANG WANG

#	Article	IF	CITATIONS
19	A Transferâ€Printed, Stretchable, and Reliable Strain Sensor Using PEDOT:PSS/Ag NW Hybrid Films Embedded into Elastomers. Advanced Materials Technologies, 2018, 3, 1800030.	5.8	42
20	Synthesis of High-Crystallinity DPP Polymers with Balanced Electron and Hole Mobility. Chemistry of Materials, 2017, 29, 10220-10232.	6.7	40
21	Biomimicking Stretchable Organic Electrochemical Transistor. Advanced Electronic Materials, 2019, 5, 1900566.	5.1	35
22	Highly sensitive detection of caspase-3 activity based on peptide-modified organic electrochemical transistor biosensors. Nanoscale, 2021, 13, 2868-2874.	5.6	33
23	Metal–organic framework transistors for dopamine sensing. Materials Chemistry Frontiers, 2021, 5, 3422-3427.	5.9	30
24	Lead-Free Perovskite/Organic Semiconductor Vertical Heterojunction for Highly Sensitive Photodetectors. ACS Applied Materials & amp; Interfaces, 2020, 12, 18769-18776.	8.0	29
25	Ultrasensitive Detection of Ribonucleic Acid Biomarkers Using Portable Sensing Platforms Based on Organic Electrochemical Transistors. Analytical Chemistry, 2021, 93, 14359-14364.	6.5	23
26	The Influence of Fiber Cross-Section on Fabric Far-Infrared Properties. Polymers, 2018, 10, 1147.	4.5	22
27	Antioxidant Grain Passivation for Airâ€Stable Tinâ€Based Perovskite Solar Cells. Angewandte Chemie, 2019, 131, 816-820.	2.0	22
28	Organic electrochemical transistor for sensing of sialic acid in serum samples. Analytica Chimica Acta, 2020, 1128, 231-237.	5.4	22
29	Ethylenedioxythiophene incorporated diketopyrrolopyrrole conjugated polymers for high-performance organic electrochemical transistors. Journal of Materials Chemistry C, 2021, 9, 4260-4266.	5.5	19
30	Insulating Polymers for Enhancing the Efficiency of Nonfullerene Organic Solar Cells. Solar Rrl, 2020, 4, 2000013.	5.8	17
31	Polymer–inorganic hybrid microparticles with hierarchical structures formed by interfacial instabilities of emulsion droplets. Soft Matter, 2012, 8, 2697.	2.7	13
32	High-efficiency robust organic solar cells using transfer-printed PEDOT:PSS electrodes through interface bonding engineering. Materials Chemistry Frontiers, 2019, 3, 901-908.	5.9	12
33	The impact of molecular weight, air exposure and molecular doping on the charge transport properties and electronic defects in dithienyl-diketopyrrolopyrrole-thieno[3,2-b]thiophene copolymers. Journal of Materials Chemistry C, 2016, 4, 10827-10838.	5.5	11
34	Efficiency enhancement of organic photovoltaics by introducing high-mobility curved small-molecule semiconductors as additives. Journal of Materials Chemistry A, 2019, 7, 12740-12750.	10.3	8