
Giovanni Maizza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3053462/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiphysics Design of an Automotive Regenerative Eddy Current Damper. Energies, 2022, 15, 5044.	3.1	2
2	Nano-Indentation Properties of Tungsten Carbide-Cobalt Composites as a Function of Tungsten Carbide Crystal Orientation. Materials, 2020, 13, 2137.	2.9	12
3	Correlation Between the Indentation Properties and Microstructure of Dissimilar Capacitor Discharge Welded WC-Co/High-Speed Steel Joints. Materials, 2020, 13, 2657.	2.9	18
4	Correlation between the bath composition and nanoporosity of DCâ€electrodeposited Niâ€Fe alloy. Surface and Interface Analysis, 2020, 52, 907-913.	1.8	0
5	Mechanical and fracture behaviour of the three-scale hierarchy structure in As-deposited and annealed nanocrystalline electrodeposited Ni–Fe alloys. Journal of Materials Science, 2019, 54, 13378-13393.	3.7	4
6	Micro-Macro Relationship between Microstructure, Porosity, Mechanical Properties, and Build Mode Parameters of a Selective-Electron-Beam-Melted Ti-6Al-4V Alloy. Metals, 2019, 9, 786.	2.3	14
7	Surface phenomena during the early stage of liquid phase SPS of a mixture of coarse WC and Niâ€alloy particles. Surface and Interface Analysis, 2018, 50, 1072-1076.	1.8	0
8	Continuous dynamic recrystallization (CDRX) model for aluminum alloys. Journal of Materials Science, 2018, 53, 4563-4573.	3.7	50
9	Peltier effect during spark plasma sintering (SPS) of thermoelectric materials. Journal of Materials Science, 2017, 52, 10341-10352.	3.7	20
10	Study of steelâ€WC interface produced by solidâ€state capacitor discharge sinterâ€welding. Surface and Interface Analysis, 2016, 48, 538-542.	1.8	10
11	Heating rate dependence of anatase to rutile transformation. Processing and Application of Ceramics, 2016, 10, 235-241.	0.8	19
12	Micro–Macro Analysis of Capacitor Discharge Sintering in Copper–Diamond Bead. Journal of the American Ceramic Society, 2015, 98, 3538-3546.	3.8	6
13	Enhanced thermoelectric performance of porous magnesium tin silicide prepared using pressure-less spark plasma sintering. Journal of Materials Chemistry A, 2015, 3, 17426-17432.	10.3	84
14	Measurement of elastic modulus by instrumented indentation in the macro-range: Uncertainty evaluation. International Journal of Mechanical Sciences, 2015, 101-102, 161-169.	6.7	27
15	Lowâ€Temperature Spark Plasma Sintering of Pure Nano <scp>WC</scp> Powder. Journal of the American Ceramic Society, 2013, 96, 1702-1705.	3.8	38
16	Spark Plasma Sintering of Diamond Binderless <scp>WC</scp> Composites. Journal of the American Ceramic Society, 2012, 95, 2423-2428.	3.8	27
17	Effects of Pressure Application Method on Transparency of Spark Plasma Sintered Alumina. Journal of the American Ceramic Society, 2011, 94, 1405-1409.	3.8	65
18	Highly Transparent Pure Alumina Fabricated by Highâ€Pressure Spark Plasma Sintering. Journal of the American Ceramic Society, 2010, 93, 2460-2462.	3.8	85

GIOVANNI MAIZZA

#	Article	IF	CITATIONS
19	Moving finite-element mesh model for aiding spark plasma sintering in current control mode of pure ultrafine WC powder. Journal of Materials Science, 2009, 44, 1219-1236.	3.7	59
20	Pressure Effect on the Homogeneity of Spark Plasma‣intered Tungsten Carbide Powder. Journal of the American Ceramic Society, 2009, 92, 2418-2421.	3.8	36
21	Electric current activated/assisted sintering (<i>ECAS</i>): a review of patents 1906–2008. Science and Technology of Advanced Materials, 2009, 10, 053001.	6.1	357
22	Densification of AISI M2 high speed steel by means of capacitor discharge sintering (CDS). Journal of Materials Processing Technology, 2008, 202, 70-75.	6.3	26
23	Relation between microstructure, properties and spark plasma sintering (SPS) parameters of pure ultrafine WC powder. Science and Technology of Advanced Materials, 2007, 8, 644-654.	6.1	73
24	Optical emission spectroscopic study for diagnostics in high gravity DC-plasma CVD diamond growth. Microgravity Science and Technology, 2006, 18, 178-183.	1.4	1
25	Simulation of Solid State Sintering through FE Modeling for the Optimum Design of 3D Parts. Advanced Engineering Materials, 2004, 6, 952-957.	3.5	1
26	Wireless optical diagnostic apparatus for analyzing diamond thin film CVD process under high gravity conditions. Diamond and Related Materials, 2004, 13, 2063-2070.	3.9	2
27	In situ plasma diagnostics study by means of optical emission spectroscopy for diamond chemical vapor deposition under high gravity conditions. Review of Scientific Instruments, 2003, 74, 4458-4461.	1.3	2
28	Simulation Practice of Powder Injection Molding. Advanced Engineering Materials, 2001, 3, 253-258.	3.5	2
29	Diamond synthesis by high-gravity d.c. plasma cvd (hgcvd) with active control of the substrate temperature. Acta Astronautica, 2001, 48, 121-127.	3.2	6
30	A high gravity chemical vapor deposition apparatus. Review of Scientific Instruments, 1997, 68, 4225-4231.	1.3	16