Joan Estelrich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3052952/publications.pdf

Version: 2024-02-01

101543 114465 4,553 111 36 63 citations h-index g-index papers 112 112 112 7289 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Prussian Blue: A Safe Pigment with Zeolitic-Like Activity. International Journal of Molecular Sciences, 2021, 22, 780.	4.1	29
2	Prussian Blue: A Nanozyme with Versatile Catalytic Properties. International Journal of Molecular Sciences, 2021, 22, 5993.	4.1	52
3	Dual Effect of Prussian Blue Nanoparticles on AÎ ² 40 Aggregation: Î ² -Sheet Fibril Reduction and Copper Dyshomeostasis Regulation. Biomacromolecules, 2021, 22, 430-440.	5.4	11
4	Superparamagnetic Nanoparticles with Efficient Near-Infrared Photothermal Effect at the Second Biological Window. Molecules, 2020, 25, 5315.	3.8	7
5	Prussian blue nanoparticles: synthesis, surface modification, and biomedical applications. Drug Discovery Today, 2020, 25, 1431-1443.	6.4	80
6	Flash tooth whitening: A friendly formulation based on a nanoencapsulated reductant. Colloids and Surfaces B: Biointerfaces, 2020, 195, 111241.	5.0	7
7	Facile Synthesis of Novel Prussian Blue–Lipid Nanocomplexes. Molecules, 2019, 24, 4137.	3.8	10
8	Bacterial Inclusion Bodies for Anti-Amyloid Drug Discovery: Current and Future Screening Methods. Current Protein and Peptide Science, 2019, 20, 563-576.	1.4	7
9	Iron Oxide Nanoparticles in Photothermal Therapy. Molecules, 2018, 23, 1567.	3.8	222
10	Combined in Vitro Cell-Based/in Silico Screening of Naturally Occurring Flavonoids and Phenolic Compounds as Potential Anti-Alzheimer Drugs. Journal of Natural Products, 2017, 80, 278-289.	3.0	68
11	Reversible and irreversible aggregation of magnetic liposomes. Nanoscale, 2017, 9, 15131-15143.	5. 6	9
12	Effect of PEGylation on Ligand-Targeted Magnetoliposomes: A Missed Goal. ACS Omega, 2017, 2, 6544-6555.	3.5	12
13	Magnetic Nanoemulsions: Comparison between Nanoemulsions Formed by Ultrasonication and by Spontaneous Emulsification. Nanomaterials, 2017, 7, 190.	4.1	30
14	Evidence of Protein Adsorption in Pegylated Liposomes: Influence of Liposomal Decoration. Nanomaterials, 2017, 7, 37.	4.1	19
15	Key Points Concerning Amyloid Infectivity and Prion-Like Neuronal Invasion. Frontiers in Molecular Neuroscience, 2016, 9, 29.	2.9	19
16	Liposomes Loaded with Hydrophobic Iron Oxide Nanoparticles: Suitable T2 Contrast Agents for MRI. International Journal of Molecular Sciences, 2016, 17, 1209.	4.1	47
17	Oil-in-water nanoemulsions are suitable for carrying hydrophobic compounds: Indomethacin as a model of anti-inflammatory drug. International Journal of Pharmaceutics, 2016, 515, 749-756.	5.2	24
18	Amyloids in solid-state nuclear magnetic resonance: potential causes of the usually low resolution. International Journal of Nanomedicine, 2015, 10, 6975.	6.7	5

#	Article	IF	CITATIONS
19	Magnetic Nanoparticles Cross the Blood-Brain Barrier: When Physics Rises to a Challenge. Nanomaterials, 2015, 5, 2231-2248.	4.1	67
20	Could $\langle i \rangle \hat{l} \pm \langle i \rangle$ -Synuclein Amyloid-Like Aggregates Trigger a Prionic Neuronal Invasion?. BioMed Research International, 2015, 2015, 1-7.	1.9	10
21	Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. International Journal of Nanomedicine, 2015, 10, 1727.	6.7	378
22	Chitosan (or alginate)-coated iron oxide nanoparticles: A comparative study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 468, 151-158.	4.7	91
23	Iron Oxide Nanoparticles for Magnetically-Guided and Magnetically-Responsive Drug Delivery. International Journal of Molecular Sciences, 2015, 16, 8070-8101.	4.1	367
24	Predicting the aggregation propensity of prion sequences. Virus Research, 2015, 207, 127-135.	2.2	7
25	Potential applications of magnetic particles to detect and treat Alzheimer's disease. Nanoscale Research Letters, 2014, 9, 538.	5.7	53
26	Formation and characterization of biobased magnetic nanoparticles double coated with dextran and chitosan by layer-by-layer deposition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 450, 121-129.	4.7	25
27	Review of drug stability in parenteral nutrition admixtures. E-SPEN Journal, 2013, 8, e135-e140.	0.5	12
28	Effect of the Phospholipid Chain Length and Head Group on Betaâ€Phase Formation of Poly(9,9â€dioctylfluorene) Enclosed in Liposomes. Photochemistry and Photobiology, 2013, 89, 1471-1478.	2.5	2
29	Ferrofluid based on polyethylene glycol-coated iron oxide nanoparticles: Characterization and properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 420, 74-81.	4.7	98
30	External magnetic field-induced selective biodistribution of magnetoliposomes in mice. Nanoscale Research Letters, 2012, 7, 452.	5.7	30
31	Liposomes bearing fibrinogen could potentially interfere with platelet interaction and procoagulant activity. International Journal of Nanomedicine, 2012, 7, 2339.	6.7	2
32	IMPROVED THERMAL ABLATION EFFICACY USING MAGNETIC NANOPARTICLES: A STUDY IN TUMOR PHANTOMS. Progress in Electromagnetics Research, 2012, 128, 229-248.	4.4	38
33	Bicelles: Lipid Nanostructured Platforms with Potential Dermal Applications. Small, 2012, 8, 807-818.	10.0	57
34	Effect of the surface charge of artificial model membranes on the aggregation of amyloid \hat{l}^2 -peptide. Biochimie, 2012, 94, 1730-1738.	2.6	40
35	Soft nanoparticles (thermo-responsive nanogels and bicelles) with biotechnological applications: from synthesis to simulation through colloidal characterization. Soft Matter, 2011, 7, 5067.	2.7	93
36	\hat{l}^2 -Phase Formation of Poly(9,9-dioctylfluorene) Induced by Liposome Phospholipid Bilayers. Journal of Physical Chemistry B, 2011, 115, 5794-5800.	2.6	21

#	Article	IF	CITATIONS
37	USING NANOPARTICLES FOR ENHANCING THE FOCUSING HEATING EFFECT OF AN EXTERNAL WAVEGUIDE APPLICATOR FOR ONCOLOGY HYPERTHERMIA: EVALUATION IN MUSCLE AND TUMOR PHANTOMS. Progress in Electromagnetics Research, 2011, 121, 343-363.	4.4	19
38	A nanovector with complete discrimination for targeted delivery to Plasmodium falciparum-infected versus non-infected red blood cells in vitro. Journal of Controlled Release, 2011, 151, 202-211.	9.9	80
39	Study of the efficacy of antimalarial drugs delivered inside targeted immunoliposomal nanovectors. Nanoscale Research Letters, 2011, 6, 620.	5.7	47
40	Magnetoliposomes prepared by reverse-phase followed by sequential extrusion: Characterization and possibilities in the treatment of inflammation. International Journal of Pharmaceutics, 2011, 405, 181-187.	5.2	26
41	Enhanced reactivity of Lys182 explains the limited efficacy of biogenic amines in preventing the inactivation of glucose-6-phosphate dehydrogenase by methylglyoxal. Bioorganic and Medicinal Chemistry, 2011, 19, 1613-1622.	3.0	6
42	Study on the Correlation between Lateral Diffusion Effect and Effective Charge in Neutral Liposomes. Langmuir, 2010, 26, 2665-2670.	3.5	4
43	Insertion of semifluorinated diblocks on DMPC and DPPC liposomes. Influence on the gel and liquid states of the bilayer. Journal of Colloid and Interface Science, 2010, 348, 388-392.	9.4	8
44	Bicosomes: Bicelles in Dilute Systems. Biophysical Journal, 2010, 99, 480-488.	0.5	25
45	Application of Bicellar Systems on Skin: Diffusion and Molecular Organization Effects. Langmuir, 2010, 26, 10578-10584.	3.5	34
46	Suspensions of repulsive colloidal particles near the glass transition: Time and frequency domain descriptions. Physical Review E, 2010, 82, 021406.	2.1	1
47	Liquid-glass transition in suspensions of charged liposomes. , 2009, , .		0
48	Nondiffusive Brownian motion of deformable particles: Breakdown of the "long-time tail― Physical Review E, 2009, 80, 021403.	2.1	4
49	Surface fractals in liposome aggregation. Physical Review E, 2009, 79, 011905.	2.1	16
50	Use of highâ€pressure freeze fixation and freeze fracture electron microscopy to study the influence of the phospholipid molar ratio in the morphology and alignment of bicelles. Journal of Microscopy, 2009, 233, 35-41.	1.8	11
51	Photophysical Changes of Pyranine Induced by Surfactants: Evidence of Premicellar Aggregates. Journal of Physical Chemistry B, 2009, 113, 1972-1982.	2.6	45
52	Conformational Changes in Stratum Corneum Lipids by Effect of Bicellar Systems. Langmuir, 2009, 25, 10595-10603.	3.5	43
53	Determination of the dimerization constant of pinacyanol: Role of the thermochromic effect. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2008, 70, 471-476.	3.9	19
54	Effect of salts on the excited state of pyranine as determined by steady-state fluorescence. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 198, 262-267.	3.9	18

#	Article	lF	CITATIONS
55	Preparation and characterization of extruded magnetoliposomes. International Journal of Pharmaceutics, 2008, 347, 156-162.	5.2	85
56	Morphological effects of ceramide on DMPC/DHPC bicelles. Journal of Microscopy, 2008, 230, 16-26.	1.8	20
57	Penetration and Growth of DPPC/DHPC Bicelles Inside the Stratum Corneum of the Skin. Langmuir, 2008, 24, 5700-5706.	3.5	42
58	Novel Donepezil-Based Inhibitors of Acetyl- and Butyrylcholinesterase and Acetylcholinesterase-Induced Î ² -Amyloid Aggregation. Journal of Medicinal Chemistry, 2008, 51, 3588-3598.	6.4	186
59	Growth of lipid vesicle structures: From surface fractals to mass fractals. Physical Review E, 2008, 78, 010902.	2.1	23
60	Aggregation of liposomes induced by calcium: A structural and kinetic study. Physical Review E, 2007, 75, 021912.	2.1	20
61	Spontaneous incorporation of \hat{l}^2 -amyloid peptide into neutral liposomes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 270-271, 13-17.	4.7	20
62	Evidence of the Existence of Micelles in the Fibrillogenesis of \hat{l}^2 -Amyloid Peptide. Journal of Physical Chemistry B, 2005, 109, 11027-11032.	2.6	125
63	Stimulatory and Inhibitory Effects of Alkyl Bromide Surfactants on Î ² -Amyloid Fibrillogenesis. Langmuir, 2005, 21, 6944-6949.	3.5	65
64	Temperature dependence of the nucleation constant rate in \hat{l}^2 amyloid fibrillogenesis. International Journal of Biological Macromolecules, 2005, 35, 9-13.	7.5	55
65	An autocatalytic reaction as a model for the kinetics of the aggregation of \hat{l}^2 -amyloid. Biopolymers, 2003, 71, 190-195.	2.4	96
66	Pinacyanol as effective probe of fibrillar \hat{l}^2 -amyloid peptide: Comparative study with Congo Red. Biopolymers, 2003, 72, 455-463.	2.4	31
67	Influence of the temperature in the adsorption of sodium dodecyl sulfate on phosphatidylcholine liposomes. Chemistry and Physics of Lipids, 2003, 124, 15-22.	3.2	11
68	Physical stability of liposomes bearing hemostatic activity. Chemistry and Physics of Lipids, 2003, 125, 139-146.	3.2	47
69	Atomic Force Microscopy of Liposomes Bearing Fibrinogen. Bioconjugate Chemistry, 2003, 14, 593-600.	3.6	20
70	Determination of Micellar Microenvironment of Pinacyanol by Visible Spectroscopy. Journal of Physical Chemistry B, 2003, 107, 4137-4142.	2.6	56
71	Disaggregating effects of ethanol at low concentration on \hat{l}^2 -poly-l-lysines. International Journal of Biological Macromolecules, 2003, 32, 10-16.	7. 5	9
72	Liquidlike structures in dilute suspensions of charged liposomes. Journal of Chemical Physics, 2003, 118, 5167-5173.	3.0	19

#	Article	lF	CITATIONS
73	Interplay between hydrodynamic and direct interactions using liposomes. Journal of Chemical Physics, 2003, 119, 628-634.	3.0	16
74	Adsorption of Sodium Lauryl Ether Sulfate on Liposomes by Means of a Fluorescent Probe:  Effect of the Ethylene Oxide Groups. Langmuir, 2002, 18, 8250-8254.	3.5	10
75	Aggregation characteristics of ovalbumin in \hat{l}^2 -sheet conformation determined by spectroscopy. Biopolymers, 2002, 67, 113-120.	2.4	10
76	Possible hemostatic effect of synthetic liposomes in experimental studies under flow conditions. Haematologica, 2002, 87, 615-23.	3.5	7
77	A Spectroscopy Study of the Interaction of Pinacyanol with n-dodecyltrimethylammonium Bromide Micelles. Langmuir, 2001, 17, 6433-6437.	3.5	71
78	Interaction of $\hat{l}\pm$ -amylase with n-alkylammonium bromides. International Journal of Biological Macromolecules, 2001, 28, 151-156.	7. 5	24
79	Influence of Dielectric Constant on the Spectral Behavior of Pinacyanol. A Spectrophotometric Experiment for Physical Chemistry. Journal of Chemical Education, 2001, 78, 243.	2.3	11
80	Location of Pinacyanol in Micellar Solutions of N-Alkyl Trimethylammonium Bromide Surfactants. Journal of Colloid and Interface Science, 2001, 233, 205-210.	9.4	45
81	Electrophoretic properties of dodecyltrimethylammonium bromide micelles in KBr solution. Electrophoresis, 2000, 21, 481-485.	2.4	29
82	Chemical degradation of liposomes by serum components detected by NMR. Chemistry and Physics of Lipids, 2000, 104, 133-148.	3.2	21
83	Influence of cholesterol on liposome fluidity by EPR. Journal of Controlled Release, 2000, 68, 85-95.	9.9	159
84	Influence of the Fluidity of Liposome Compositions on Percutaneous Absorption. Drug Delivery, 2000, 7, 7-13.	5.7	37
85	Kinetic and Structural Aspects of the Adsorption of Sodium Dodecyl Sulfate on Phosphatidylcholine Liposomes. Langmuir, 2000, 16, 4068-4071.	3.5	22
86	The Effect of Liposomes on Skin Barrier Structure. Skin Pharmacology and Physiology, 1999, 12, 235-246.	2.5	41
87	Transbilayer Movement of Sodium Dodecyl Sulfate in Large Unilamellar Phospholid Vesicles. Langmuir, 1999, 15, 6609-6612.	3.5	18
88	Electrokinetic Study of the Sublytic Interaction of Alkyl Sulfates with Phosphatidylcholine Liposomes. Langmuir, 1999, 15, 2230-2233.	3.5	16
89	Influence of Size on Electrokinetic Behavior of Phosphatidylserine and Phosphatidylethanolamine Lipid Vesicles. Journal of Colloid and Interface Science, 1998, 206, 512-517.	9.4	55
90	Electrophoretic Behavior of Stearylamine-Containing Liposomes. Langmuir, 1998, 14, 7522-7526.	3.5	18

#	Article	IF	Citations
91	Bilayer Distribution of Phosphatidylserine and Phosphatidylethanolamine in Lipid Vesicles. Bioconjugate Chemistry, 1997, 8, 941-945.	3.6	30
92	Serum–liposome interaction is an oxygen-dependent process. Lipids and Lipid Metabolism, 1997, 1345, 43-55.	2.6	9
93	Physicochemical properties of enrofloxacin. Journal of Pharmaceutical and Biomedical Analysis, 1997, 15, 1845-1849.	2.8	86
94	Determination of Polyethylene Glycol Activated with Cyanuric Chloride in Liposomes. Analytical Biochemistry, 1997, 253, 33-36.	2.4	10
95	Liposomes as an agrochemical tool: optimization of their production. Industrial Crops and Products, 1996, 5, 203-208.	5.2	17
96	Factors influencing the encapsulation of thioguanine in DRV liposomes. International Journal of Pharmaceutics, 1996, 143, 171-177.	5.2	10
97	Enrofloxacin Loaded Liposomes Obtained by High Speed Dispersion Method Chemical and Pharmaceutical Bulletin, 1995, 43, 983-987.	1.3	13
98	Encapsulation of thioguanine in liposomes. International Journal of Pharmaceutics, 1995, 124, 261-269.	5.2	19
99	Physical stability of different liposome compositions obtained by extrusion method. Journal of Microencapsulation, 1995, 12, 525-535.	2.8	63
100	Tautomerism of Neutral and Protonated 6-Thioguanine in the Gas Phase and in Aqueous Solution. An ab Initio Study. Journal of Organic Chemistry, 1995, 60, 969-976.	3.2	41
101	Design and applications of a new fluorimetric assay of thioguanine in liposomes. Journal of Pharmaceutical and Biomedical Analysis, 1994, 12, 1495-1499.	2.8	10
102	Liposomes obtained by the ethanol injection method. International Journal of Pharmaceutics, 1993, 95, 51-56.	5.2	160
103	Interaction of doxorubicin with lipid systems. Bioconjugate Chemistry, 1991, 2, 398-402.	3.6	10
104	Fluorescence quenching of albumin. A spectrofluorimetric experiment. Biochemical Education, 1990, 18, 99-101.	0.1	23
105	The action of Triton X-100 and sodium dodecyl sulphate on lipid layers. Effect on monolayers and liposomes. Journal of Microencapsulation, 1990, 7, 255-259.	2.8	10
106	Binding of non-steroidal anti-inflammatory drugs to human serum albumin. International Journal of Pharmaceutics, 1990, 62, 21-25.	5.2	21
107	Physicochemical Properties of a Human Glycoprotein Bearing Blood Group A Activity. Journal of Biochemistry, 1989, 106, 745-750.	1.7	3
108	Interaction of non-steroidal anti-inflammatory agents on monolayers: an approach for understanding the entrappment of drugs in liposomes. Biochemical Society Transactions, 1989, 17, 996-997.	3.4	1

#	Article	IF	CITATIONS
109	Ampicillin polymers: identification by gel-filtration chromatography. International Journal of Pharmaceutics, 1988, 41, 241-244.	5.2	6
110	Determination of the encapsulation efficiency in liposomes obtained by the  extruder method'. Journal of Microencapsulation, 1987, 4, 315-320.	2.8	14
111	Measurement of a glycoprotein with blood group A activity by light scattering. Journal of Proteomics, 1987, 14, 119-126.	2.4	0