
Carlos Rodrigo Figueroa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3052679/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	â€~Movers and shakers' in the regulation of fruit ripening: a cross-dissection of climacteric versus non-climacteric fruit. Journal of Experimental Botany, 2014, 65, 4705-4722.	4.8	223
2	Methyl jasmonate treatment induces changes in fruit ripening by modifying the expression of several ripening genes in Fragaria chiloensis fruit. Plant Physiology and Biochemistry, 2013, 70, 433-444.	5.8	140
3	Salt stress response triggers activation of the jasmonate signaling pathway leading to inhibition of cell elongation in Arabidopsis primary root. Journal of Experimental Botany, 2016, 67, 4209-4220.	4.8	132
4	Thermoplastic starch/clay nanocomposites loaded with essential oil constituents as packaging for strawberries â^' In vivo antimicrobial synergy over Botrytis cinerea. Postharvest Biology and Technology, 2017, 129, 29-36.	6.0	103
5	Effects of preharvest applications of methyl jasmonate and chitosan on postharvest decay, quality and chemical attributes of Fragaria chiloensis fruit. Food Chemistry, 2016, 190, 448-453.	8.2	90
6	Changes in cell wall polysaccharides and cell wall degrading enzymes during ripening of Fragaria chiloensis and Fragaria A—ananassa fruits. Scientia Horticulturae, 2010, 124, 454-462.	3.6	83
7	Softening rate of the Chilean strawberry (Fragaria chiloensis) fruit reflects the expression of polygalacturonase and pectate lyase genes. Postharvest Biology and Technology, 2008, 49, 210-220.	6.0	82
8	Effect of postharvest treatment of calcium and auxin on cell wall composition and expression of cell wall-modifying genes in the Chilean strawberry (Fragaria chiloensis) fruit. Food Chemistry, 2012, 132, 2014-2022.	8.2	71
9	Recent Advances in Hormonal Regulation and Cross-Talk during Non-Climacteric Fruit Development and Ripening. Horticulturae, 2019, 5, 45.	2.8	69
10	The synergistic antimicrobial effect of carvacrol and thymol in clay/polymer nanocomposite films over strawberry gray mold. LWT - Food Science and Technology, 2015, 64, 390-396.	5.2	60
11	Aroma Development during Ripening of <i>Fragaria chiloensis</i> Fruit and Participation of an Alcohol Acyltransferase (FcAAT1) Gene. Journal of Agricultural and Food Chemistry, 2009, 57, 9123-9132.	5.2	58
12	<i>>VpAAT1</i> , a Gene Encoding an Alcohol Acyltransferase, Is Involved in Ester Biosynthesis during Ripening of Mountain Papaya Fruit. Journal of Agricultural and Food Chemistry, 2010, 58, 5114-5121.	5.2	58
13	Jasmonate Metabolism and Its Relationship with Abscisic Acid During Strawberry Fruit Development and Ripening. Journal of Plant Growth Regulation, 2018, 37, 101-113.	5.1	54
14	Transcriptional analysis of cell wall and cuticle related genes during fruit development of two sweet cherry cultivars with contrasting levels of cracking tolerance. Chilean Journal of Agricultural Research, 2014, 74, 162-169.	1.1	51
15	Jasmonates and Plant Salt Stress: Molecular Players, Physiological Effects, and Improving Tolerance by Using Genome-Associated Tools. International Journal of Molecular Sciences, 2021, 22, 3082.	4.1	46
16	Expression of five expansin genes during softening of Fragaria chiloensis fruit: Effect of auxin treatment. Postharvest Biology and Technology, 2009, 53, 51-57.	6.0	41
17	Characterization of two divergent cDNAs encoding xyloglucan endotransglycosylase/hydrolase (XTH) expressed in Fragaria chiloensis fruit. Plant Science, 2010, 179, 479-488.	3.6	41
18	Independent Preharvest Applications of Methyl Jasmonate and Chitosan Elicit Differential Upregulation of Defense-Related Genes with Reduced Incidence of Gray Mold Decay during Postharvest Storage of Fragaria chiloensis Fruit. International Journal of Molecular Sciences, 2017, 18, 1420.	4.1	39

#	Article	IF	CITATIONS
19	Effect of abscisic acid and methyl jasmonate preharvest applications on fruit quality and cracking tolerance of sweet cherry. Chilean Journal of Agricultural Research, 2018, 78, 438-446.	1.1	38
20	Expression of a functional jasmonic acid carboxyl methyltransferase is negatively correlated with strawberry fruit development. Journal of Plant Physiology, 2014, 171, 1315-1324.	3.5	37
21	Cell wall-related enzymatic activities and transcriptional profiles in four strawberry (Fragaria x) Tj ETQq1 1 0.7843	14 rgBT /(3.6	Dygrlock 10
22	Application of a JA-Ile Biosynthesis Inhibitor to Methyl Jasmonate-Treated Strawberry Fruit Induces Upregulation of Specific MBW Complex-Related Genes and Accumulation of Proanthocyanidins. Molecules, 2018, 23, 1433.	3.8	34
23	Postharvest Treatment of Hydrogen Sulfide Delays the Softening of Chilean Strawberry Fruit by Downregulating the Expression of Key Genes Involved in Pectin Catabolism. International Journal of Molecular Sciences, 2021, 22, 10008.	4.1	28
24	Characterization of fruit development and potential health benefits of arrayan (Luma apiculata), a native berry of South America. Food Chemistry, 2016, 196, 1239-1247.	8.2	26
25	Jasmonate signalling pathway in strawberry: Genome-wide identification, molecular characterization and expression of JAZs and MYCs during fruit development and ripening. PLoS ONE, 2018, 13, e0197118.	2.5	26
26	Evolutionary Analysis of JAZ Proteins in Plants: An Approach in Search of the Ancestral Sequence. International Journal of Molecular Sciences, 2019, 20, 5060.	4.1	26
27	Methyl Jasmonate Applications From Flowering to Ripe Fruit Stages of Strawberry (Fragaria × ananassa) Tj ETQq 11, 538.	1 1 0.784 3.6	314 rgBT / <mark>O</mark> 23
28	Priming of Defense Systems and Upregulation of MYC2 and JAZ1 Genes after Botrytis cinerea Inoculation in Methyl Jasmonate-Treated Strawberry Fruits. Plants, 2020, 9, 447.	3.5	22
29	Expression of an ethylene-related expansin gene during softening of mountain papaya fruit (Vasconcellea pubescens). Postharvest Biology and Technology, 2009, 53, 58-65.	6.0	20
30	Patagonian Berries: Healthy Potential and the Path to Becoming Functional Foods. Foods, 2019, 8, 289.	4.3	20
31	Ethylene application at the immature stage of Fragaria chiloensis fruit represses the anthocyanin biosynthesis with a concomitant accumulation of lignin. Food Chemistry, 2021, 358, 129913.	8.2	20
32	Novel plant breeding techniques to advance nitrogen use efficiency in rice: A review. GM Crops and Food, 2021, 12, 627-646.	3.8	16
33	Abscisic acid applied to sweet cherry at fruit set increases amounts of cell wall and cuticular wax components at the ripe stage. Scientia Horticulturae, 2021, 283, 110097.	3.6	15
34	Antimicrobial Activity of Extracts of Two Native Fruits of Chile: Arrayan (Luma apiculata) and Peumo (Cryptocarya alba). Antibiotics, 2020, 9, 444.	3.7	13
35	Transcript profiling suggests transcriptional repression of the flavonoid pathway in the white-fruited Chilean strawberry, Fragaria chiloensis (L.) Mill Genetic Resources and Crop Evolution, 2009, 56, 895-903.	1.6	12
36	A new functional JAZ degron sequence in strawberry JAZ1 revealed by structural and interaction studies on the COI1–JA-IIe/COR–JAZs complexes. Scientific Reports, 2020, 10, 11310.	3.3	12

#	Article	IF	CITATIONS
37	Interactions of JAZ Repressors with Anthocyanin Biosynthesis-Related Transcription Factors of Fragaria × ananassa. Agronomy, 2020, 10, 1586.	3.0	9
38	Structural analysis of the woodland strawberry COI1-JAZ1 co-receptor for the plant hormone jasmonoyl-isoleucine. Journal of Molecular Graphics and Modelling, 2018, 85, 250-261.	2.4	8
39	Characterization of cell wall modification through thermogravimetric analysis during ripening of Chilean strawberry (Fragaria chiloensis) fruit. Cellulose, 2021, 28, 4611-4623.	4.9	8
40	Relationship between Endogenous Ethylene Production and Firmness during the Ripening and Cold Storage of Raspberry (Rubus idaeus â€~Heritage') Fruit. Horticulturae, 2022, 8, 262.	2.8	8
41	Genetic Variation and Trait Correlations for Fruit Weight, Firmness and Color Parameters in Wild Accessions of Fragaria chiloensis. Agronomy, 2019, 9, 506.	3.0	7
42	Linkage disequilibrium and population structure in <i>Fragaria chiloensis</i> revealed by SSR markers transferred from commercial strawberry. Acta Scientiarum - Agronomy, 2018, 40, 34966.	0.6	5
43	Editorial: Regulation of Fruit Ripening and Senescence. Frontiers in Plant Science, 2021, 12, 711458.	3.6	4
44	Characterization of Fruit Development, Antioxidant Capacity, and Potential Vasoprotective Action of Peumo (Cryptocarya alba), a Native Fruit of Chile. Antioxidants, 2021, 10, 1997.	5.1	4
45	Bayesian Inference of Genetic Parameters for Survival, Flowering, Fruit Set, and Ripening in a Germplasm Collection of Chilean Strawberry Using Threshold Models. Journal of the American Society for Horticultural Science, 2016, 141, 285-291.	1.0	3
46	Changes of cell wall-associated polysaccharides and sugars during development and ripening of arrayan (Luma apiculata) and lleuque (Prumnopitys andina) fruits. Acta Physiologiae Plantarum, 2022, 44, 1.	2.1	2
47	Physiochemical and antibacterial characterization of fruits of Citronella mucronata (Cardiopteridaceae), Pitavia punctata (Rutaceae) and Beilschmiedia berteroana (Lauraceae), three endemic and threatened Chilean trees. Fruits, 2017, 72, 87-96.	0.4	1
48	ANALYSIS OF TARGET GENES THAT AFFECT THE SOFTENING OF THE CHILEAN STRAWBERRY FRUITS. Acta Horticulturae, 2009, , 881-884.	0.2	0