
Nadezhda Kudryavtseva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3052329/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies. Publications of the Astronomical Society of Australia, 2013, 30, .	1.3	892
2	wsclean: an implementation of a fast, generic wide-field imager for radio astronomy. Monthly Notices of the Royal Astronomical Society, 2014, 444, 606-619.	1.6	562
3	The WEBT BL Lacertae Campaign 2000. Astronomy and Astrophysics, 2002, 390, 407-421.	2.1	140
4	The WEBT BL Lacertae Campaign 2001 and its extension. Astronomy and Astrophysics, 2004, 421, 103-114.	2.1	110
5	Coordinated Multiwavelength Observations of BL Lacertae in 2000. Astrophysical Journal, 2003, 596, 847-859.	1.6	67
6	BROADBAND SPECTRAL MODELING OF THE EXTREME GIGAHERTZ-PEAKED SPECTRUM RADIO SOURCE PKS B0008-421. Astrophysical Journal, 2015, 809, 168.	1.6	65
7	THE IMPORTANCE OF WIDE-FIELD FOREGROUND REMOVAL FOR 21 cm COSMOLOGY: A DEMONSTRATION WITH EARLY MWA EPOCH OF REIONIZATION OBSERVATIONS. Astrophysical Journal, 2016, 819, 8.	1.6	65
8	The Murchison Widefield Array Commissioning Survey: A Low-Frequency Catalogue of 14 110 Compact Radio Sources over 6 100 Square Degrees. Publications of the Astronomical Society of Australia, 2014, 31, .	1.3	62
9	The Be/X-ray transient 4U 0115+63/V635 Cassiopeiae. Astronomy and Astrophysics, 2007, 462, 1081-1089.	2.1	42
10	Modelling of the spectral energy distribution of Fornax A: leptonic and hadronic production of high-energy emission from the radio lobes. Monthly Notices of the Royal Astronomical Society, 2015, 446, 3478-3491.	1.6	41
11	The kinematics in the pc-scale jets of AGN. Astronomy and Astrophysics, 2010, 511, A57.	2.1	40
12	A new method for estimating frequency-dependent core shifts in active galactic nucleus jets. Monthly Notices of the Royal Astronomical Society, 2011, 415, 1631-1637.	1.6	40
13	The First Murchison Widefield Array low-frequency radio observations of cluster scale non-thermal emission: the case of Abell 3667. Monthly Notices of the Royal Astronomical Society, 2014, 445, 330-346.	1.6	39
14	The Murchison Widefield Array Correlator. Publications of the Astronomical Society of Australia, 2015, 32, .	1.3	39
15	Low Altitude Solar Magnetic Reconnection, Type III Solar Radio Bursts, and X-ray Emissions. Scientific Reports, 2018, 8, 1676.	1.6	38
16	ON THE DETECTION AND TRACKING OF SPACE DEBRIS USING THE MURCHISON WIDEFIELD ARRAY. I. SIMULATIONS AND TEST OBSERVATIONS DEMONSTRATE FEASIBILITY. Astronomical Journal, 2013, 146, 103.	1.9	34
17	A possible jet precession in the periodic quasar B0605–085. Astronomy and Astrophysics, 2011, 526, A51.	2.1	32
18	High-energy sources at low radio frequency: the Murchison Widefield Array view of <i>Fermi</i> blazars. Astronomy and Astrophysics, 2016, 588, A141.	2.1	31

#	Article	IF	CITATIONS
19	A Possible Periodicity in the Radio Light Curves of 3C 454.3. Research in Astronomy and Astrophysics, 2007, 7, 364-374.	1.1	30
20	Power spectrum analysis of ionospheric fluctuations with the Murchison Widefield Array. Radio Science, 2015, 50, 574-597.	0.8	30
21	Modeling nuclei of radio galaxies from VLBI radio observations. Astronomy and Astrophysics, 2008, 483, 125-135.	2.1	23
22	Frequency-dependent time delays for strong outbursts in selected blazars from the Metsäovi and UMRAO monitoring data bases – II. Monthly Notices of the Royal Astronomical Society, 2007, 381, 797-808.	1.6	19
23	MURCHISON WIDEFIELD ARRAY OBSERVATIONS OF ANOMALOUS VARIABILITY: A SERENDIPITOUS NIGHT-TIME DETECTION OF INTERPLANETARY SCINTILLATION. Astrophysical Journal Letters, 2015, 809, L12.	3.0	19
24	Frequency-dependent time-delays for strong outbursts in selected blazars from the Metsäovi and the University of Michigan Radio Astronomy Observatory monitoring databases – I Monthly Notices of the Royal Astronomical Society, 2006, 373, 1470-1482.	1.6	18
25	Satellite altimetry reveals spatial patterns of variations in the Baltic Sea wave climate. Earth System Dynamics, 2017, 8, 697-706.	2.7	17
26	Validation of the multi-mission altimeter wave height data for the Baltic Sea region. Estonian Journal of Earth Sciences, 2016, 65, 161.	0.4	16
27	A search for periodicity in the light curves of selected blazars. Astronomy Reports, 2006, 50, 1-11.	0.2	15
28	Ionospheric Modelling using GPS to Calibrate the MWA. I: Comparison of First Order Ionospheric Effects between GPS Models and MWA Observations. Publications of the Astronomical Society of Australia, 2015, 32, .	1.3	13
29	Identification of mechanisms that drive water level extremes from in situ measurements in the Gulf of Riga during 1961–2017. Continental Shelf Research, 2019, 182, 22-36.	0.9	13
30	The role of nearshore slope on cross-shore surface transport during a coastal upwelling event in Gulf of Finland, Baltic Sea. Estuarine, Coastal and Shelf Science, 2018, 209, 123-135.	0.9	10
31	Non-stationary Modeling of Trends in Extreme Water Level Changes Along the Baltic Sea Coast. Journal of Coastal Research, 2018, 85, 586-590.	0.1	10
32	A Matched Filter Technique for Slow Radio Transient Detection and First Demonstration with the Murchison Widefield Array. Astronomical Journal, 2017, 153, 98.	1.9	9
33	Modification of closure depths by synchronisation of severe seas and high water levels. Geo-Marine Letters, 2017, 37, 35-46.	0.5	9
34	Variability of distributions of wave set-up heights along a shoreline with complicated geometry. Ocean Science, 2020, 16, 1047-1065.	1.3	9
35	Optical and infrared monitoring of BL Lac in 1999–2001. Astronomy Letters, 2004, 30, 209-217.	0.1	8
36	Effects of large-scale atmospheric circulation on the Baltic Sea wave climate: application of the EOF method on multi-mission satellite altimetry data. Climate Dynamics, 2021, 57, 3465-3478.	1.7	8

#	Article	IF	CITATIONS
37	Non-stationary analysis of water level extremes in Latvian waters, Baltic Sea, during 1961–2018. Natural Hazards and Earth System Sciences, 2021, 21, 1279-1296.	1.5	6
38	Coastal Flooding: Joint Probability of Extreme Water Levels and Waves along the Baltic Sea Coast. Journal of Coastal Research, 2020, 95, 1146.	0.1	6
39	The blazar 0059+581: Successful prognosis of activity. Astronomy Reports, 2006, 50, 468-482.	0.2	1
40	First look Murchison Widefield Array observations of Abell 3667. , 2014, , .		0
41	Waves in the sky: Probing the ionosphere with the Murchison Widefield Array. , 2015, , .		Ο
42	The kinematics of S5 1803+784. , 2007, , .		0