Alesha B Castillo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3052168/publications.pdf

Version: 2024-02-01

42 papers 2,777 citations

236925 25 h-index 330143 37 g-index

45 all docs 45 docs citations

45 times ranked

3840 citing authors

#	Article	lF	CITATIONS
1	Mechanically-regulated bone repair. Bone, 2022, 154, 116223.	2.9	15
2	Bioactive, full-length parathyroid hormone delivered using an adeno-associated viral vector. Experimental Biology and Medicine, 2022, 247, 1885-1897.	2.4	O
3	Cellular and molecular mechanotransduction in bone. , 2021, , 309-335.		2
4	Cells Involved in Mechanotransduction Including Mesenchymal Stem Cells. , 2020, , 311-332.		2
5	Siteâ€Specific Loadâ€Induced Expansion of Scaâ€1 < sup>+ < /sup>Prrx1 < sup>+ < /sup> and Scaâ€1 < sup>â^² < /sup>Prrx1 < sup>+ < /sup> Cells in Adult Mouse Long Bone Is Attenuated With Age. JBMR Plus, 2019, 3, e10199.	2.7	15
6	Mechanical Loading Promotes the Expansion of Primitive Osteoprogenitors and Organizes Matrix and Vascular Morphology in Long Bone Defects. Journal of Bone and Mineral Research, 2019, 34, 896-910.	2.8	35
7	Targeting Osteogenesis-Angiogenesis Coupling for Bone Repair. Journal of the American Academy of Orthopaedic Surgeons, The, 2018, 26, e153-e155.	2.5	16
8	Effects of mechanical loading on cortical defect repair using a novel mechanobiological model of bone healing. Bone, 2018, 108, 145-155.	2.9	50
9	WNT-activated bone grafts repair osteonecrotic lesions in aged animals. Scientific Reports, 2017, 7, 14254.	3.3	8
10	Nanotopographic Regulation of Human Mesenchymal Stem Cell Osteogenesis. ACS Applied Materials & Samp; Interfaces, 2017, 9, 41794-41806.	8.0	52
11	The Selective Serotonin Reuptake Inhibitor Fluoxetine Directly Inhibits Osteoblast Differentiation and Mineralization During Fracture Healing in Mice. Journal of Bone and Mineral Research, 2017, 32, 821-833.	2.8	51
12	Osteoblast-derived paracrine factors regulate angiogenesis in response to mechanical stimulation. Integrative Biology (United Kingdom), 2016, 8, 785-794.	1.3	35
13	Introduction for the special issue: Fracture healing and bone regeneration. Clinical Reviews in Bone and Mineral Metabolism, 2015, 13, 207-207.	0.8	O
14	Mechanical loading causes site-specific anabolic effects on bone following exposure to ionizing radiation. Bone, 2015, 81, 260-269.	2.9	15
15	Bone Homeostasis and Repair: Forced Into Shape. Current Rheumatology Reports, 2015, 17, 58.	4.7	21
16	Oxygen-sensing PHDs regulate bone homeostasis through the modulation of osteoprotegerin. Genes and Development, 2015, 29, 817-831.	5.9	78
17	Comparison of three methods of calculating strain in the mouse ulna in exogenous loading studies. Journal of Biomechanics, 2015, 48, 53-58.	2.1	5
18	Estrogen receptor- \hat{l}^2 regulates mechanical signaling in primary osteoblasts. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E937-E944.	3.5	26

#	Article	IF	Citations
19	Decellularized Tendon-Bone Composite Grafts for Extremity Reconstruction. Plastic and Reconstructive Surgery, 2014, 133, 79-89.	1.4	33
20	Cellular and Molecular Mechanotransduction in Bone. , 2013, , 453-475.		8
21	<scp>CXCR</scp> 4 antagonism attenuates loadâ€induced periosteal bone formation in mice. Journal of Orthopaedic Research, 2013, 31, 1828-1838.	2.3	29
22	Geometric mouse variation: Implications to the axial ulnar loading protocol and animal specific calibration. Journal of Biomechanics, 2013, 46, 2271-2276.	2.1	7
23	Comparison of tricalcium phosphate cement and cancellous autograft as bone void filler in acetabular fractures with marginal impaction. Injury, 2013, 44, 969-974.	1.7	10
24	Wnt3a Reestablishes Osteogenic Capacity to Bone Grafts from Aged Animals. Journal of Bone and Joint Surgery - Series A, 2013, 95, 1278-1288.	3.0	52
25	Physicochemical Decellularization of Composite Flexor Tendon–Bone Interface Grafts. Plastic and Reconstructive Surgery, 2013, 132, 94-102.	1.4	26
26	Focal Adhesion Kinase Plays a Role in Osteoblast Mechanotransduction In Vitro but Does Not Affect Load-Induced Bone Formation In Vivo. PLoS ONE, 2012, 7, e43291.	2.5	37
27	Mechanosensing by the Primary Cilium: Deletion of Kif3A Reduces Bone Formation Due to Loading. PLoS ONE, 2012, 7, e33368.	2.5	106
28	Mesenchymal Stem Cell Mechanobiology. Current Osteoporosis Reports, 2010, 8, 98-104.	3.6	80
29	The epigenetic mechanism of mechanically induced osteogenic differentiation. Journal of Biomechanics, 2010, 43, 2881-2886.	2.1	133
30	Osteocyte Mechanobiology and Pericellular Mechanics. Annual Review of Biomedical Engineering, 2010, 12, 369-400.	12.3	178
31	Deletion of \hat{l}^21 Integrins from Cortical Osteocytes Reduces Load-Induced Bone Formation. Cellular and Molecular Bioengineering, 2009, 2, 416-424.	2.1	26
32	Grizzly bears (Ursus arctos horribilis) and black bears (Ursus americanus) prevent trabecular bone loss during disuse (hibernation). Bone, 2009, 45, 1186-1191.	2.9	59
33	Primary Cilia: Cellular Sensors for the Skeleton. Anatomical Record, 2008, 291, 1074-1078.	1.4	63
34	The skeletal responsiveness to mechanical loading is enhanced in mice with a null mutation in estrogen receptor- \hat{l}^2 . American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E484-E491.	3.5	62
35	Simulated effects of marathon training on bone density, remodeling, and microdamage accumulation of the femur. International Journal of Fatigue, 2007, 29, 1057-1064.	5.7	8
36	BIOMECHANICAL AND MOLECULAR REGULATION OF BONE REMODELING. Annual Review of Biomedical Engineering, 2006, 8, 455-498.	12.3	1,007

#	ARTICLE	IF	CITATION
37	Low-amplitude, broad-frequency vibration effects on cortical bone formation in mice. Bone, 2006, 39, 1087-1096.	2.9	39
38	Exercise When Young Provides Lifelong Benefits to Bone Structure and Strength. Journal of Bone and Mineral Research, 2006, 22, 251-259.	2.8	158
39	Knee ligament mechanical properties are not influenced by estrogen or its receptors. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E1034-E1040.	3.5	33
40	Exercise During Growth Has Long-Term Benefits to Skeletal Health. Medicine and Science in Sports and Exercise, 2006, 38, S72.	0.4	0
41	Biological Effects of Short-Term or Prolonged Administration of 9-[2-(Phosphonomethoxy)Propyl]Adenine (Tenofovir) to Newborn and Infant Rhesus Macaques. Antimicrobial Agents and Chemotherapy, 2004, 48, 1469-1487.	3.2	132
42	Tenofovir treatment at 30 mg/kg/day can inhibit cortical bone mineralization in growing rhesus monkeys (Macaca mulatta). Journal of Orthopaedic Research, 2002, 20, 1185-1189.	2.3	63