Tsunehiro Tanaka

List of Publications by Citations

Source: https://exaly.com/author-pdf/3052080/tsunehiro-tanaka-publications-by-citations.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

183
papers7,006
citations45
h-index78
g-index194
ext. papers7,989
ext. citations6.1
avg, IF6.02
L-index

#	Paper	IF	Citations
183	Thermally stable single atom Pt/m-AlO for selective hydrogenation and CO oxidation. <i>Nature Communications</i> , 2017 , 8, 16100	17.4	390
182	A Series of NiM (M = Ru, Rh, and Pd) Bimetallic Catalysts for Effective Lignin Hydrogenolysis in Water. <i>ACS Catalysis</i> , 2014 , 4, 1574-1583	13.1	351
181	Ultrathin rhodium nanosheets. <i>Nature Communications</i> , 2014 , 5, 3093	17.4	350
180	Photocatalytic conversion of CO2 in water over layered double hydroxides. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 8008-11	16.4	249
179	Selective Amine Oxidation Using Nb2O5 Photocatalyst and O2. ACS Catalysis, 2011, 1, 1150-1153	13.1	213
178	Photocatalytic Reduction of CO2 to CO in the Presence of H2 or CH4 as a Reductant over MgO. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 346-354	3.4	212
177	X-ray absorption (EXAFS/XANES) study of supported vanadium oxide catalysts. Structure of surface vanadium oxide species on silica and Ealumina at a low level of vanadium loading. <i>Journal of the Chemical Society Faraday Transactions I</i> , 1988 , 84, 2987		199
176	Adsorbed Species of CO2 and H2 on Ga2O3 for the Photocatalytic Reduction of CO2. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 8892-8898	3.8	155
175	XAFS Study of Tungsten L1- and L3-Edges: Structural Analysis of WO3Species Loaded on TiO2as a Catalyst for Photo-oxidation of NH3. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 6869-6879	3.8	132
174	Photocatalytic reduction of CO2 using H2 as reductant over ATaO3 photocatalysts (A = Li, Na, K). <i>Applied Catalysis B: Environmental</i> , 2010 , 96, 565-568	21.8	122
173	Effect of Ti3+ Ions and Conduction Band Electrons on Photocatalytic and Photoelectrochemical Activity of Rutile Titania for Water Oxidation. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 6467-6474	3.8	114
172	In situ spectroscopy-guided engineering of rhodium single-atom catalysts for CO oxidation. <i>Nature Communications</i> , 2019 , 10, 1330	17.4	111
171	Photoreduction of CO2 with H2 over ZrO2. A study on interaction of hydrogen with photoexcited CO2. <i>Physical Chemistry Chemical Physics</i> , 2000 , 2, 2635-2639	3.6	108
170	Catalytic amino acid production from biomass-derived intermediates. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 5093-5098	11.5	107
169	Photocatalytic conversion of CO2 in water over Ag-modified La2Ti2O7. <i>Applied Catalysis B: Environmental</i> , 2015 , 163, 241-247	21.8	102
168	Effect of H2 gas as a reductant on photoreduction of CO2 over a Ga2O3 photocatalyst. <i>Chemical Physics Letters</i> , 2008 , 467, 191-194	2.5	102
167	Deconvolution Analysis of Ga K-Edge XANES for Quantification of Gallium Coordinations in Oxide Environments. <i>Journal of Physical Chemistry B</i> , 1998 , 102, 10190-10195	3.4	100

(2003-2014)

A doping technique that suppresses undesirable H2 evolution derived from overall water splitting in the highly selective photocatalytic conversion of CO2 in and by water. <i>Chemistry - A European Journal</i> , 2014 , 20, 9906-9	4.8	94	
Reaction mechanism in the photoreduction of CO2 with CH4 over ZrO2. <i>Physical Chemistry Chemical Physics</i> , 2000 , 2, 5302-5307	3.6	90	
Analysis of XANES for identification of highly dispersed transition metal oxides on supports. <i>Catalysis Letters</i> , 1992 , 12, 277-285	2.8	89	
Mechanism of Photooxidation of Alcohol over Nb2O5. Journal of Physical Chemistry C, 2009, 113, 1871	3- <u>1</u> , 8 71	8 88	
Photoreduction of carbon dioxide by hydrogen over magnesium oxide. <i>Physical Chemistry Chemical Physics</i> , 2001 , 3, 1108-1113	3.6	88	
Supported Tantalum Oxide Catalysts: Synthesis, Physical Characterization, and Methanol Oxidation Chemical Probe Reaction. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 5243-5250	3.4	86	
Highly efficient photocatalytic conversion of CO2 into solid CO using H2O as a reductant over Ag-modified ZnGa2O4. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 11313-11319	13	81	
Tuning the selectivity toward CO evolution in the photocatalytic conversion of CO2 with H2O through the modification of Ag-loaded Ga2O3 with a ZnGa2O4 layer. <i>Catalysis Science and Technology</i> , 2016 , 6, 1025-1032	5.5	73	
Study on the Dispersion of Nickel Ions in the NiOMgO System by X-ray Absorption Fine Structure. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 2302-2309		72	
Identification and reactivity of a surface intermediate in the photoreduction of CO2 with H2 over ZrO2. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1998 , 94, 1875-1880		71	
Highly selective photocatalytic conversion of CO2 by water over Ag-loaded SrNb2O6 nanorods. <i>Applied Catalysis B: Environmental</i> , 2017 , 218, 770-778	21.8	65	
Metal-Dependent Support Effects of Oxyhydride-Supported Ru, Fe, Co Catalysts for Ammonia Synthesis. <i>Advanced Energy Materials</i> , 2018 , 8, 1801772	21.8	65	
Modification of Metal Nanoparticles with TiO2 and MetalBupport Interaction in Photodeposition. <i>ACS Catalysis</i> , 2011 , 1, 187-192	13.1	64	
One-electron reducibility of isolated copper oxide on alumina for selective NOITO reaction. <i>Applied Catalysis B: Environmental</i> , 2006 , 64, 282-289	21.8	64	
A Theoretical Investigation on CO Oxidation by Single-Atom Catalysts M/EAlO (M=Pd, Fe, Co, and Ni). <i>ChemCatChem</i> , 2017 , 9, 1222-1229	5.2	63	
Liquid phase photooxidation of alcohol over niobium oxide without solvents. <i>Catalysis Today</i> , 2007 , 120, 233-239	5.3	63	
Effect of the chloride ion as a hole scavenger on the photocatalytic conversion of CO2 in an aqueous solution over Ni-Al layered double hydroxides. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 17995-8003	3.6	60	
Structures and Acid B ase Properties of La/Al2O3 Role of La Addition to Enhance Thermal Stability of FAl2O3. <i>Chemistry of Materials</i> , 2003 , 15, 4830-4840	9.6	59	
	in the highly selective photocatalytic conversion of CO2 in and by water. Chemistry - A European Journal, 2014, 20, 9906-9 Reaction mechanism in the photoreduction of CO2 with CH4 over ZrO2. Physical Chemistry Chemical Physics, 2000, 2, 5302-5307 Analysis of XANES for identification of highly dispersed transition metal oxides on supports. Catalysis Letters, 1992, 12, 277-285 Mechanism of Photooxidation of Alcohol over Nb2O5. Journal of Physical Chemistry C, 2009, 113, 1871 Photoreduction of carbon dioxide by hydrogen over magnesium oxide. Physical Chemistry Chemical Physics, 2001, 3, 1108-1113 Supported Tantalum Oxide Catalysts: Synthesis, Physical Characterization, and Methanol Oxidation Chemical Probe Reaction. Journal of Physical Chemistry B, 2003, 107, 5243-5250 Highly efficient photocatalytic conversion of CO2 into solid CO using H2O as a reductant over Ag-modified ZnGa2O4. Journal of Materials Chemistry A, 2015, 3, 11313-11319 Tuning the selectivity toward CO evolution in the photocatalytic conversion of CO2 with H2O through the modification of Ag-loaded Ga2O3 with a ZnGa2O4 layer. Catalysis Science and Technology, 2016, 6, 1025-1032 Study on the Dispersion of Nickel Ions in the NiONgO System by X-ray Absorption Fine Structure. The Journal of Physical Chemistry, 1996, 100, 2302-2309 Identification and reactivity of a surface intermediate in the photoreduction of CO2 with H2 over ZrO2. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 1875-1880 Highly selective photocatalytic conversion of CO2 by water over Ag-loaded SrNb2O6 nanorods. Applied Catalysis B: Environmental, 2017, 218, 770-778 Metal-Dependent Support Effects of Oxyhydride-Supported Ru, Fe, Co Catalysts for Ammonia Synthesis. Advanced Energy Materials, 2018, 8, 1801772 Modification of Metal Nanoparticles with TiO2 and MetalBupport Interaction in Photodeposition. ACS Catalysis B: Environmental, 2006, 64, 282-289 A Theoretical Investigation on CO Oxidation by Single-Atom Catalysts M/BAIO (M=Pd, Fe, Co, and Nil). Chemica	in the highly selective photocatalytic conversion of CO2 in and by water. Chemistry - A European Journal, 2014, 20, 9906-9 Reaction mechanism in the photoreduction of CO2 with CH4 over ZrO2. Physical Chemistry Chemical Physics, 2000, 2, 5302-5307 Analysis of XANES for identification of highly dispersed transition metal oxides on supports. Analysis of XANES for identification of highly dispersed transition metal oxides on supports. Analysis Letters, 1992, 12, 277-285 Mechanism of Photooxidation of Alcohol over Nb2O5. Journal of Physical Chemistry C, 2009, 113, 18713-1871 Photoreduction of carbon dioxide by hydrogen over magnesium oxide. Physical Chemistry Chemical Physics, 2001, 3, 1108-1113 Supported Tantalum Oxide Catalysts: Synthesis, Physical Characterization, and Methanol Oxidation Chemical Probe Reaction. Journal of Physical Chemistry B, 2003, 107, 5243-5250 Highly efficient photocatalytic conversion of CO2 into solid CO using H2O as a reductant over Ag-modified ZnGa2O4. Journal of Materials Chemistry A, 2015, 3, 11313-11319 13 Tuning the selectivity toward CO evolution in the photocatalytic conversion of CO2 with H2O through the modification of Ag-loaded Ga2O3 with a ZnGa2O4 layer. Catalysis Science and Technology, 2016, 6, 1025-1032 Study on the Dispersion of Nickel Ions in the NiOMigO System by X-ray Absorption Fine Structure. The Journal of Physical Chemistry, 1996, 100, 2302-2309 Identification and reactivity of a surface intermediate in the photoreduction of CO2 with H2 over ZrO2. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 1875-1880 Highly selective photocatalytic conversion of CO2 by water over Ag-loaded SrNb2O6 nanorods. Applied Catalysis B: Environmental, 2017, 218, 770-778 Metal-Dependent Support Effects of Oxyhydride-Supported Ru, Fe, Co Catalysts for Ammonia Synthesis. Advanced Energy Materials, 2018, 8, 1801772 Modification of Metal Nanoparticles with TiO2 and MetalBupport Interaction in Photodeposition. ACS Catalysis B: Environmental, 2006, 64, 282-289 A	in the highty selective photocatalytic conversion of CO2 int and by water. Chemistry - A European Journal, 2014, 20, 9906-9 Reaction mechanism in the photoreduction of CO2 with CH4 over ZrO2. Physical Chemistry Chemical Physics, 2000, 2, 5302-5307 Analysis of XANES for identification of highly dispersed transition metal oxides on supports. Analysis of XANES for identification of highly dispersed transition metal oxides on supports. Analysis of XANES for identification of Alcohol over Nb2O5. Journal of Physical Chemistry C, 2009, 113, 18713-18718-88 Mechanism of Photooxidation of Alcohol over Nb2O5. Journal of Physical Chemistry Chemical Physics, 2001, 3, 1108-1113 Supported Tantalum Oxide Catalysts: Synthesis, Physical Characterization, and Methanol Oxidation Chemical Probe Reaction. Journal of Physical Chemistry B, 2003, 107, 5243-5250 Highly efficient photocatalytic conversion of CO2 into solid CO using H2O as a reductant over Ag-modified ZnGa2O4. Journal of Materials Chemistry A, 2015, 3, 11313-11319 Tuning the selectivity toward CO evolution in the photocatalytic conversion of CO2 with H2O through the modification of Ag-loaded Ga2O3 with a ZnGa2O4 layer. Catalysis Science and Technology, 2016, 6, 1025-1032 Study on the Dispersion of Nickel Ions in the NiOBigO System by X-ray Absorption Fine Structure. The Journal of Physical Chemistry, 1996, 100, 2302-2309 Identification and reactivity of a surface intermediate in the photoreduction of CO2 with H2O over ZrO2. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 1875-1880 Metal-Dependent Support Effects of Oxyhydride-Supported Ru, Fe, Co Catalysts for Ammonia Systhesis. Advanced Energy Materials, 2018, 8, 1801772 Metal-Dependent Amnoparticles with TIO2 and MetalBupport Interaction in Photodeposition. ACS Catalysis, 2011, 1, 187-192 One-electron reducibility of isolated copper oxide on alumina for selective NOtiO reaction. Applied Catalysis & Environmental, 2006, 64, 282-289 A Theoretical Investigation on CO Oxidation by Single-Atom

148	Preparation of Active Absorbent for Dry-Type Flue Gas Desulfurization from Calcium Oxide, Coal Fly Ash, and Gypsum. <i>Industrial & Engineering Chemistry Research</i> , 2000 , 39, 1390-1396	3.9	59
147	NO reduction with CO in the presence of O2 over Al2O3-supported and Cu-based catalysts. <i>Physical Chemistry Chemical Physics</i> , 2002 , 4, 2449-2458	3.6	57
146	Structures of Molybdenum Species in Silica-Supported Molybdenum Oxide and Alkali-Ion-Modified Silica-Supported Molybdenum Oxide. <i>Journal of Physical Chemistry B</i> , 1998 , 102, 2960-2969	3.4	56
145	Elucidating strong metal-support interactions in PtBn/SiO2 catalyst and its consequences for dehydrogenation of lower alkanes. <i>Journal of Catalysis</i> , 2018 , 365, 277-291	7.3	52
144	Reaction Mechanism of Selective Photooxidation of Amines over Niobium Oxide: Visible-Light-Induced Electron Transfer between Adsorbed Amine and Nb2O5. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 442-450	3.8	52
143	Zeolite-Encaged Pd-Mn Nanocatalysts for CO Hydrogenation and Formic Acid Dehydrogenation. Angewandte Chemie - International Edition, 2020 , 59, 20183-20191	16.4	52
142	XAFS study of zirconia-supported copper catalysts for the NOLO reaction: Deactivation, rejuvenation and stabilization of Cu species. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1998 , 94, 3743-3752		47
141	Rutile titanium dioxide prepared by hydrogen reduction of Degussa P25 for highly efficient photocatalytic hydrogen evolution. <i>Catalysis Science and Technology</i> , 2016 , 6, 5693-5699	5.5	46
140	Photocatalytic Conversion of CO2 by H2O over Ag-Loaded SrO-Modified Ta2O5. <i>Bulletin of the Chemical Society of Japan</i> , 2015 , 88, 431-437	5.1	45
139	Visible Light Absorbed NH2 Species Derived from NH3 Adsorbed on TiO2 for Photoassisted Selective Catalytic Reduction. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 14189-14197	3.8	45
138	Which is an Intermediate Species for Photocatalytic Conversion of CO2 by H2O as the Electron Donor: CO2 Molecule, Carbonic Acid, Bicarbonate, or Carbonate Ions?. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 8711-8721	3.8	43
137	Effect of reduction method on the activity of PtBn/SiO2 for dehydrogenation of propane. <i>Catalysis Today</i> , 2014 , 232, 33-39	5.3	43
136	Popping of graphite oxide: application in preparing metal nanoparticle catalysts. <i>Advanced Materials</i> , 2015 , 27, 4688-94	24	43
135	Structure of Active Species in Alkali-Ion-Modified Silica-Supported Vanadium Oxide. <i>Journal of Physical Chemistry B</i> , 1997 , 101, 9035-9040	3.4	41
134	Dehydrogenation of Propane over Silica-Supported PlatinumIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	∮ ^{.2}	40
133	Alumina-Supported Rare-Earth Oxides Characterized by Acid-Catalyzed Reactions and Spectroscopic Methods. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 1908-1916	3.4	40
132	Structure of MoMg Binary Oxides in Oxidized/Reduced States Studied by X-ray Absorption Spectroscopy at the Mo K Edge and Mg K Edge. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 5440-5446		39
131	Reaction Mechanism of Selective Photooxidation of Hydrocarbons over Nb2O5. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 19320-19327	3.8	38

(2005-2017)

130	Strong metal-support interaction between Pt and SiO following high-temperature reduction: a catalytic interface for propane dehydrogenation. <i>Chemical Communications</i> , 2017 , 53, 6937-6940	5.8	37
129	Effects of reaction temperature on the photocatalytic activity of photo-SCR of NO with NH3 over a TiO2 photocatalyst. <i>Catalysis Science and Technology</i> , 2013 , 3, 1771	5.5	36
128	Structural Analysis of Group V, VI, and VII Metal Compounds by XAFS. <i>Journal of Physical Chemistry</i> C, 2011 , 115, 23653-23663	3.8	35
127	Brfisted Acid Generation over Alumina-Supported Niobia by Calcination at 1173 K. <i>Catalysis Letters</i> , 2009 , 129, 383-386	2.8	35
126	Modification of GaO by an Ag-Cr core-shell cocatalyst enhances photocatalytic CO evolution for the conversion of CO by HO. <i>Chemical Communications</i> , 2018 , 54, 1053-1056	5.8	35
125	Local structure and La L1 and L3-edge XANES spectra of lanthanum complex oxides. <i>Inorganic Chemistry</i> , 2014 , 53, 6048-53	5.1	34
124	Photocatalytic conversion of CO2 in an aqueous solution using various kinds of layered double hydroxides. <i>Catalysis Today</i> , 2015 , 251, 140-144	5.3	34
123	A ZnTa2O6 photocatalyst synthesized via solid state reaction for conversion of CO2 into CO in water. <i>Catalysis Science and Technology</i> , 2016 , 6, 4978-4985	5.5	34
122	Oxygen storage capacity of Sr3Fe2O7[having high structural stability. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 13540-13545	13	33
121	A unique photo-activation mechanism by th situ doping for photo-assisted selective NO reduction with ammonia over TiO2 and photooxidation of alcohols over Nb2O5. <i>Catalysis Science and Technology</i> , 2011 , 1, 541	5.5	33
120	Photoassisted NO reduction with NH3 over TiO2 photocatalyst. <i>Chemical Communications</i> , 2002 , 2742-3	3 5.8	33
119	Physico-chemical and catalytic properties of ytterbium introduced into Y-zeolite. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1993 , 89, 3177		33
118	Enhancement of CO Evolution by Modification of GaO with Rare-Earth Elements for the Photocatalytic Conversion of CO by HO. <i>Langmuir</i> , 2017 , 33, 13929-13935	4	32
117	Necessary and sufficient conditions for the successful three-phase photocatalytic reduction of CO by HO over heterogeneous photocatalysts. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 8423-8431	3.6	31
116	NO Reduction with CO in the Presence of O2 over Cu/Al2O3 (3) Istructural Analysis of Active Species by Means of XAFS and UV/VIS/NIR Spectroscopy. <i>Topics in Catalysis</i> , 2002 , 18, 113-118	2.3	31
115	XAFS and XRD Analysis of Ceria Z irconia Oxygen Storage Promoters for Automotive Catalysts. <i>Topics in Catalysis</i> , 2008 , 47, 137-147	2.3	30
114	Effective Driving of Ag-Loaded and Al-Doped SrTiO3 under Irradiation at № 300 nm for the Photocatalytic Conversion of CO2 by H2O. <i>ACS Applied Energy Materials</i> , 2020 , 3, 1468-1475	6.1	29
113	Modification of photocatalytic center for photo-epoxidation of propylene by rubidium ion addition to V2O5/SiO2. <i>Catalysis Communications</i> , 2005 , 6, 269-273	3.2	29

112	Dynamic Behavior of Rh Species in Rh/AlO Model Catalyst during Three-Way Catalytic Reaction: An Operando X-ray Absorption Spectroscopy Study. <i>Journal of the American Chemical Society</i> , 2018 , 140, 176-184	16.4	29
111	Fabrication of well-shaped Sr2KTa5O15 nanorods with a tetragonal tungsten bronze structure by a flux method for artificial photosynthesis. <i>Applied Catalysis B: Environmental</i> , 2016 , 199, 272-281	21.8	28
110	A nanoLDH catalyst with high CO2 adsorption capability for photo-catalytic reduction. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 9684-9690	13	27
109	Drastic improvement in the photocatalytic activity of Ga2O3 modified with MgAl layered double hydroxide for the conversion of CO2 in water. <i>Sustainable Energy and Fuels</i> , 2017 , 1, 1740-1747	5.8	27
108	Effect of Calcium Sulfate Addition on the Activity of the Absorbent for Dry Flue Gas Desulfurization. <i>Energy & Desulfurization</i> 2001, 15, 438-443	4.1	27
107	Visible-light-assisted selective catalytic reduction of NO with NH3 on porphyrin derivative-modified TiO2 photocatalysts. <i>Catalysis Science and Technology</i> , 2015 , 5, 556-561	5.5	26
106	Visible-Light Selective Photooxidation of Aromatic Hydrocarbons via Ligand-to-Metal Charge Transfer Transition on Nb2O5. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 22854-22861	3.8	25
105	CO2 capture, storage, and conversion using a praseodymium-modified Ga2O3 photocatalyst. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 19351-19357	13	25
104	Investigation of the electrochemical and photoelectrochemical properties of Ni-Al LDH photocatalysts. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 13811-9	3.6	24
103	Size Controlled Synthesis of Gold Nanoparticles by Porphyrin with Four Sulfur Atoms. <i>Topics in Catalysis</i> , 2009 , 52, 852-859	2.3	23
102	Oxygen Storage Property and Chemical Stability of SrFe1\(\mathbb{I}\)TixO3\(\mathbb{I}\)with Robust Perovskite Structure. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 19358-19364	3.8	22
101	Valence Variation of Yb Encapsulated in the Supercage of Y-Type Zeolite. <i>Japanese Journal of Applied Physics</i> , 1993 , 32, 481	1.4	22
100	Reaction mechanism and the role of copper in the photooxidation of alcohol over Cu/Nb2O5. <i>ChemPhysChem</i> , 2011 , 12, 2823-30	3.2	21
99	In Situ Time-Resolved Energy-Dispersive XAFS Study on Reduction Behavior of Pt Supported on TiO2 and Al2O3. <i>Catalysis Letters</i> , 2009 , 131, 413-418	2.8	21
98	xTunes: A new XAS processing tool for detailed and on-the-fly analysis. <i>Radiation Physics and Chemistry</i> , 2020 , 175, 108270	2.5	21
97	Role of lattice oxygen and oxygen vacancy sites in platinum group metal catalysts supported on Sr3Fe2O7Ifor NO-selective reduction. <i>Catalysis Science and Technology</i> , 2018 , 8, 147-153	5.5	21
96	Enhanced oxygen-release/storage properties of Pd-loaded SrFeO. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 14107-14113	3.6	20
95	Highly Active and Stable PtBn/SBA-15 Catalyst Prepared by Direct Reduction for Ethylbenzene Dehydrogenation: Effects of Sn Addition. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 7	 16 ∂ :917	'2 ¹⁹

(2016-2017)

94	Selective reduction of NO over Cu/Al2O3: Enhanced catalytic activity by infinitesimal loading of Rh on Cu/Al2O3. <i>Molecular Catalysis</i> , 2017 , 442, 74-82	3.3	18	
93	Flux method fabrication of potassium rare-earth tantalates for CO2 photoreduction using H2O as an electron donor. <i>Catalysis Today</i> , 2018 , 300, 173-182	5.3	18	
92	Isolated Platinum Atoms in Ni/EAl2O3 for Selective Hydrogenation of CO2 toward CH4. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 23446-23454	3.8	18	
91	Structural analysis of tungsten⊠irconium oxide catalyst by W K-edge and L1-edge XAFS. <i>X-Ray Spectrometry</i> , 2008 , 37, 226-231	0.9	18	
90	X-Ray absorption spectroscopy (EXAFS/XANES) evidence for the preferential formation of isolated VO4 species on highly photoactive V2O5/SiO2 catalysts. <i>Journal of the Chemical Society Chemical Communications</i> , 1987 , 506		18	
89	Deactivation Mechanism of Pd/CeO2IdrO2 Three-Way Catalysts Analyzed by Chassis-Dynamometer Tests and in Situ Diffuse Reflectance Spectroscopy. <i>ACS Catalysis</i> , 2019 , 9, 6415-6424	13.1	17	
88	Metal oxide promoted TiO2 catalysts for photo-assisted selective catalytic reduction of NO with NH3. <i>Research on Chemical Intermediates</i> , 2008 , 34, 487-494	2.8	17	
87	Zeolite-Encaged PdMn Nanocatalysts for CO2 Hydrogenation and Formic Acid Dehydrogenation. <i>Angewandte Chemie</i> , 2020 , 132, 20358-20366	3.6	16	
86	Rational Design of a Molecular Nanocatalyst-Stabilizer that Enhances both Catalytic Activity and Nanoparticle Stability. <i>ChemCatChem</i> , 2012 , 4, 1907-1910	5.2	15	
85	Selective Catalytic Reduction of NO by NH over Photocatalysts (Photo-SCR): Mechanistic Investigations and Developments. <i>Chemical Record</i> , 2016 , 16, 2268-2277	6.6	15	
84	Effect of Thickness of Chromium Hydroxide Layer on Ag Cocatalyst Surface for Highly Selective Photocatalytic Conversion of CO2 by H2O. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 2083-209	9 <mark>8</mark> .3	15	
83	Characterization of Cu Nanoparticles on TiO2 Photocatalysts Fabricated by Electroless Plating Method. <i>Topics in Catalysis</i> , 2014 , 57, 975-983	2.3	14	
82	Control of Acid-Site Location of MFI Zeolite by Catalytic Cracking of Silane and Its Application to Olefin Synthesis from Acetone. <i>Journal of Chemical Engineering of Japan</i> , 2009 , 42, S162-S167	0.8	14	
81	Generation of Brāsted Acid Over Alumina-Supported Niobia Calcined at High Temperatures. <i>Topics in Catalysis</i> , 2010 , 53, 672-677	2.3	14	
80	Striking Oxygen-Release/Storage Properties of Fe-Site-Substituted Sr3Fe2O7\(\textstyle{\pi}\) Journal of Physical Chemistry C, 2018 , 122, 11186-11193	3.8	13	
79	NO Oxidation and Storage Properties of a Ruddlesden-Popper-Type SrFeO-Layered Perovskite Catalyst. <i>ACS Applied Materials & Damp; Interfaces</i> , 2019 , 11, 26985-26993	9.5	13	
78	The importance of direct reduction in the synthesis of highly active PtBn/SBA-15 for n-butane dehydrogenation. <i>Catalysis Science and Technology</i> , 2019 , 9, 947-956	5.5	12	
77	Promoter effect of Pd species on Mn oxide catalysts supported on rare-earth-iron mixed oxide. Catalysis Science and Technology, 2016, 6, 7868-7874	5.5	12	

76	In situ observation of the dynamic behavior of CuAlDx catalysts for water gas shift reaction during daily start-up and shut-down (DSS)-like operation. <i>Catalysis Science and Technology</i> , 2012 , 2, 168	85 ^{5.5}	12
75	Photo-Induced Electron Transfer Between a Reactant Molecule and Semiconductor Photocatalyst: In Situ Doping. <i>Catalysis Surveys From Asia</i> , 2011 , 15, 240-258	2.8	12
74	Recent progress in photocatalytic conversion of carbon dioxide over gallium oxide and its nanocomposites. <i>Current Opinion in Chemical Engineering</i> , 2018 , 20, 114-121	5.4	11
73	Local Structure of Pr, Nd, and Sm Complex Oxides and Their X-ray Absorption Near Edge Structure Spectra. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 20881-20888	3.8	11
72	Solvothermal Synthesis of Ca2Nb2O7 Fine Particles and Their High Activity for Photocatalytic Water Splitting into H2 and O2 under UV Light Irradiation. <i>Chemistry Letters</i> , 2015 , 44, 1001-1003	1.7	11
71	Dual Ag/Co cocatalyst synergism for the highly effective photocatalytic conversion of CO by HO over Al-SrTiO. <i>Chemical Science</i> , 2021 , 12, 4940-4948	9.4	11
70	A detailed insight into the catalytic reduction of NO operated by Cr-Cu nanostructures embedded in a CeO surface. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 25592-25601	3.6	11
69	Development of Rh-Doped Ga2O3 Photocatalysts for Reduction of CO2 by H2O as an Electron Donor at a More than 300 nm Wavelength. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 21132-21139	3.8	11
68	Self-regeneration of a Ni-Cu alloy catalyst during a three-way catalytic reaction. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 18816-18822	3.6	10
67	Local Structure and L1- and L3-Edge X-ray Absorption Near Edge Structure of Late Lanthanide Elements (Ho, Er, Yb) in Their Complex Oxides. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 8070-8077	3.8	10
66	Photo-induced Surface Property on Transparent Mesoporous Silica Thin Films Containing Single-site Photocatalyst. <i>Topics in Catalysis</i> , 2008 , 47, 116-121	2.3	10
65	Role of Bicarbonate Ions in Aqueous Solution as a Carbon Source for Photocatalytic Conversion of CO2 into CO. <i>ACS Applied Energy Materials</i> , 2019 , 2, 5397-5405	6.1	9
64	Excellent Catalytic Activity of a Pd-Promoted MnOx Catalyst for Purifying Automotive Exhaust Gases. <i>ChemCatChem</i> , 2020 , 12, 4276-4280	5.2	9
63	Dynamics of the Lattice Oxygen in a Ruddlesden P opper-type Sr3Fe2O7ICatalyst during NO Oxidation. <i>ACS Catalysis</i> , 2020 , 10, 2528-2537	13.1	9
62	Metal Oxide Catalysts. Series on Synchrotron Radiation Techniques and Applications, 1996, 304-325		9
61	Enhanced CO evolution for photocatalytic conversion of CO2 by H2O over Ca modified Ga2O3. <i>Communications Chemistry</i> , 2020 , 3,	6.3	9
60	Optimized Synthesis of Ag-Modified Al-Doped SrTiO3 Photocatalyst for the Conversion of CO2 Using H2O as an Electron Donor. <i>ChemistrySelect</i> , 2020 , 5, 8779-8786	1.8	9
59	Ni P t Alloy Nanoparticles with Isolated Pt Atoms and Their Cooperative Neighboring Ni Atoms for Selective Hydrogenation of CO2 Toward CH4 Evolution: In Situ and Transient Fourier Transform Infrared Studies. ACS Applied Nano Materials. 2020 , 3, 9633-9644	5.6	9

(2020-2018)

A feasibility study of fange-extended EXAFS measurement at the Pt L3-edge of Pt/Al2O3 in the presence of Au2O3. <i>Journal of Analytical Atomic Spectrometry</i> , 2018 , 33, 84-89	3.7	9	
Mechanism of NOIIO reaction over highly dispersed cuprous oxide on Ealumina catalyst using a metalEupport interfacial site in the presence of oxygen: similarities to and differences from biological systems. <i>Catalysis Science and Technology</i> , 2018 , 8, 3833-3845	5.5	9	
Pd/SrFeTi O as Environmental Catalyst: Purification of Automotive Exhaust Gases. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 22182-22189	9.5	8	
Pore-Size Dependence of the Acidic Property of Mesoporous Silica FSM-16. <i>Topics in Catalysis</i> , 2009 , 52, 657-663	2.3	8	
Efficient oxygen storage property of SrHe mixed oxide as automotive catalyst support. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 1013-1021	13	7	
Effect of molybdenum on the structure and performance of V2O5/TiO2BiO2MoO3 catalysts for the oxidative degradation of o-chlorotoluene. <i>Applied Catalysis A: General</i> , 2020 , 595, 117496	5.1	7	
CO and C3H6 oxidation over platinum-group metal (PGM) catalysts supported on Mn-modified hexagonal YbFeO3. <i>Catalysis Today</i> , 2019 , 332, 183-188	5.3	7	
Sodium Cation Substitution in SrKTaO toward Enhancement of Photocatalytic Conversion of CO Using HO as an Electron Donor. <i>ACS Omega</i> , 2017 , 2, 8187-8197	3.9	7	
Oxidative Spaltung von Chlorbrenzkatechinen mit molekularem Sauerstoff unter Katalyse durch Nicht-Hm-Eisen(III)-Komplexe und deren Bedeutung als Chlorbrenzkatechin-Dioxygenase-Modellverbindungen. <i>Angewandte Chemie</i> , 1998 , 110, 527-530	3.6	7	
Fe-Modified CuNi Alloy Catalyst as a Nonprecious Metal Catalyst for Three-Way Catalysis. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 19907-19917	3.9	7	
Deactivation Mechanism and Enhanced Durability of V2O5/TiO2BiO2MoO3 Catalysts for NH3BCR in the Presence of SO2. <i>ChemCatChem</i> , 2020 , 12, 5938-5947	5.2	7	
Ionic Liquid-Stabilized Single-Atom Rh Catalyst Against Leaching. CCS Chemistry,1814-1822	7.2	7	
Pt-Co Alloy Nanoparticles on a EAl O Support: Synergistic Effect between Isolated Electron-Rich Pt and Co for Automotive Exhaust Purification. <i>ChemPlusChem</i> , 2019 , 84, 447-456	2.8	7	
Photocatalytic Conversion of Carbon Dioxide over A2BTa5O15 (A = Sr, Ba; B = K, Na) Using Ammonia as an Efficient Sacrificial Reagent. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 8247-	82 ⁸ .3	7	
Highly Selective Photocatalytic Conversion of Carbon Dioxide by Water over Al-SrTiO3 Photocatalyst Modified with SilverMetal Dual Cocatalysts. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 9327-9335	8.3	7	
Efficient photocatalytic carbon monoxide production from ammonia and carbon dioxide by the aid of artificial photosynthesis. <i>Chemical Science</i> , 2017 , 8, 5797-5801	9.4	6	
Important Role of Strontium Atom on the Surface of SrKTaO with a Tetragonal Tungsten Bronze Structure to Improve Adsorption of CO for Photocatalytic Conversion of CO by HO. <i>ACS Applied Materials & </i>	9.5	6	
Imparting CO reduction selectivity to ZnGaO photocatalysts by crystallization from hetero nano assembly of amorphous-like metal hydroxides <i>RSC Advances</i> , 2020 , 10, 8066-8073	3.7	6	
	presence of Au2O3. Journal of Analytical Atomic Spectrometry, 2018, 33, 84-89 Mechanism of NoCio reaction over highly dispersed cuprous oxide on Blumina catalyst using a metalliapport interfacial site in the presence of oxygens similarities to and differences from biological systems. Catalysis Science and Technology, 2018, 8, 3833-3845 Pd/SrFeTi O as Environmental Catalyst: Purification of Automotive Exhaust Gases. ACS Applied Materials & Amp; interfaces, 2018, 10, 22182-22189 Pore-Size Dependence of the Acidic Property of Mesoporous Silica FSM-16. Topics in Catalysis, 2009, 52, 657-663 Efficient oxygen storage property of SrBe mixed oxide as automotive catalyst support. Journal of Materials Chemistry A, 2019, 7, 1013-1021 Effect of molybdenum on the structure and performance of V2OS/TiO2BiO2MoO3 catalysts for the oxidative degradation of o-chlorotoluene. Applied Catalysis A: General, 2020, 595, 117496 CO and C3H6 oxidation over platinum-group metal (PGM) catalysts supported on Mn-modified hexagonal YbFeO3. Catalysis Today, 2019, 332, 183-188 Sodium Cation Substitution in SrkTaO toward Enhancement of Photocatalytic Conversion of CO Using HO as an Electron Donor. ACS Omega, 2017, 2, 8187-8197 Oxidative Spaltung von Chlorbrenzkatechinen mit molekularem Sauerstoff unter Katalyse durch Nicht-HB-Eisen(III)-Komplexe und deren Bedeutung als Chlorbrenzkatechinionioxygense-Modellverbindungen. Angewandte Chemie, 1998, 110, 527-530 Fe-Modified CuNi Alloy Catalyst as a Nonprecious Metal Catalyst for Three-Way Catalysis. Industrial & Amp; Engineering Chemistry Research, 2020, 59, 19907-19917 Deactivation Mechanism and Enhanced Durability of V2OS/TiO2BiO2MoO3 Catalysts for NH3BCR in the Presence of SO2. ChemCatChem, 2020, 12, 5938-5947 Ionic Liquid-Stabilized Single-Atom Rh Catalyst Against Leaching. CCS Chemistry, 1814-1822 Ph-Co Alloy Nanoparticles on a BAI O Support: Synergistic Effect between Isolated Electron-Rich Pt and Co for Automotive Exhaust Purification. ChemPlusChem, 2019, 84, 447-456 Photocatalystic	Mechanism of NOED reaction over highly dispersed cuprous oxide on Blumina catalyst using a metalBupport interfacial size in the presence of oxygen; similarities to and differences from biological systems. Catalysis Science and Technology, 2018, 8, 3833-3845 Pd/SrFeTi O as Environmental Catalyst: Purification of Automotive Exhaust Gases. ACS Applied Materials & Amp; Interfaces, 2018, 10, 22182-22189 Pore-Size Dependence of the Acidic Property of Mesoporous Silica FSM-16. Topics in Catalysis, 2009, 23, 657-663 Efficient oxygen storage property of SrBe mixed oxide as automotive catalyst support. Journal of Materials Chemistry A, 2019, 7, 1013-1021 Effect of molybdenum on the structure and performance of V2OS/TiO2BiO2MoO3 catalysts for the oxidative degradation of o-chlorotoluene. Applied Catalysis A: General, 2020, 595, 117496 CO and C3H6 oxidation over platinum-group metal (PGM) catalysts supported on Mn-modified hexagonal YbFeO3. Catalysis Today, 2019, 332, 183-188 Sodium Cation Substitution in SrkTaO toward Enhancement of Photocatalytic Conversion of CO Using HO as an Electron Donor. ACS Omega, 2017, 2, 8187-8197 Oxidative Spaltung von Chlorbenezkatechinen mit molekularem Sauerstoff unter Katalyse durch Nicht-Hit-Eisen(III)-Komplexe und deren Bedeutung als Chlorbenezkatechin-Dioxygenase-Modellverbindungen. Angewandte Chemie, 1998, 110, 527-530 Pe-Modified CuNi Alloy Catalysts as a Nonprecious Metal Catalyst for Three-Way Catalysis. Industrial Aamp; Engineering Chemistry Research, 2020, 59, 19907-19917 Deactivation Mechanism and Enhanced Durability of V2OS/TiO2BiO2MoO3 Catalysts for NH3BCR in the Presence of SO2. ChemCatChem, 2020, 12, 5938-5947 Pe-Co Alloy Nanoparticles on a BAI O Support: Synergistic Effect between Isolated Electron-Rich Pt and Co for Automotive Exhaust Purification. ChemPlusChem, 2019, 84, 447-456 Photocatalytic Conversion of Carbon Dioxide over A2ETaSO15 (A = Sr. Bs; B s. N. B.) Using Ammonia as an Efficient Sacrificial Reagent. ACS Sustainable Chemistry and Engineering, 2018, 6,	presence of Au2O3. Journal of Analytical Atomic Spectrometry, 2018, 33, 84-89 Mechanism of NOLO reaction over thighly dispersed cuprous oxide on fallumina catalyst using a metal Ruport interfacial site in the presence of oxygen similarities to and differences from biological systems. Catalysis Science and Technology, 2018, 8, 3833-3845 Pd/SFFeTI O as Environmental Catalysts: Purification of Automotive Exhaust Gases. ACS Applied Materials & Interfaces, 2018, 10, 22182-22189 Pore-Size Dependence of the Acidic Property of Mesoporous Silica FSM-16. Topics in Catalysis, 2009, 52, 657-635. Efficient oxygen storage property of SrBe mixed oxide as automotive catalyst support. Journal of Materials Chemistry A, 2019, 7, 1013-1021 Effect of molybdenum on the structure and performance of V2OS/TiO2SiO2BioO3 catalysts for the oxidative degradation of o-chlorotoluene. Applied Catalysis A: Ceneral, 2020, 595, 117496 CO and C3H6 oxidation over platinum-group metal (PCM) catalysts supported on Mn-modified hexagonal YbFeO3. Catalysis Today, 2019, 332, 183-188 Sodium Cation Substitution in SrKTaO toward Enhancement of Photocatalytic Conversion of CO Using HO as an Electron Donor. ACS Omega, 2017, 2, 8187-8197 Oxidative Spaltung von Chlorbrenzkatechinen mit molekularem Sauerstoff unter Katalyse durch Nicht-Hift-Eisen(III)-Komplexe und deren Bedeutung als Chlorbrenzkatechin-loxygenase-Modellverbindungen. Angewandet Chemie, 1998, 110, 527-530 Fe-Modified CuNi Alloy Catalyst as a Nonprecious Metal Catalyst for Three-Way Catalysis. Industrial & Amps. Engineering Chemistry Research, 2020, 59, 19907-19917 Deactivation Mechanism and Enhanced Durability of V2OS/TiO2BiO2BiO03 Catalysts for NH3BCR in the Presence of SO2. Chem Catchem, 2020, 12, 5938-5947 Prico Alloy Nanoparticles on a BALO Support: Synergistic Effect between Isolated Electron-Rich Pt and Co for Automotive Exhaust Purification. ChemPlusChem, 2019, 94, 447-456 Photocatalytic Conversion of Carbon Dioxide over A2BTa5015 (A= Sr, Ba; B= K, Na) Using Ammonia as an E

40	Structural analysis of group V, VI, VII metal compounds by XAFS and DFT calculation. <i>Journal of Physics: Conference Series</i> , 2009 , 190, 012073	0.3	6
39	Low-temperature NO oxidation using lattice oxygen in Fe-site substituted SrFeO. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 24181-24190	3.6	6
38	Oxidation and Storage Mechanisms for Nitrogen Oxides on Variously Terminated (001) Surfaces of SrFeO and SrFeO Perovskites. <i>ACS Applied Materials & Description of Street Action (1988)</i> 13, 7216-7226	9.5	6
37	In Situ XANES Characterization of V2O5/TiO2BiO2MoO3 Catalyst for Selective Catalytic Reduction of NO by NH3. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 13467-13476	3.9	5
36	Quantum Chemical Computation-Driven Development of Cu-Shell R u-Core Nanoparticle Catalyst for NO Reduction Reaction. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 20251-20256	3.8	5
35	Synthesis and Catalytic Performance of OrganicIhorganic Hybrid Mesoporous Material Having Basic Nanospace. <i>Catalysis Letters</i> , 2010 , 140, 121-126	2.8	5
34	Effect of Cr Species on Photocatalytic Stability during the Conversion of CO2 by H2O. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 2894-2899	3.8	4
33	Photoelectrochemical investigation of the role of surface-modified Yb species in the photocatalytic conversion of CO2 by H2O over Ga2O3 photocatalysts. <i>Catalysis Today</i> , 2020 , 352, 18-26	5.3	4
32	Active Center Induced by Vibronic Interactions in V2O5/SiO2. <i>Topics in Catalysis</i> , 2009 , 52, 808-812	2.3	4
31	Determination of Chemical States of Mercury on Activated Carbon Using XANES. <i>AIP Conference Proceedings</i> , 2007 ,	О	4
30	Effect of Composition and Structure of Coating Polymers on Moisture Transporting Properties in Waterproof/Moisture-permeable Fabrics Prepared by Wet-Coagulation Process <i>Seni Kikai Gakkai Shi/Journal of the Textile Machinery Society of Japan</i> , 1996 , 49, T49-T55		4
29	NO Storage Performance at Low Temperature over Platinum Group Metal-Free SrTiO-Based Material. <i>ACS Applied Materials & Discrete Section</i> 10, 100 Metals 2001 Meta	9.5	4
28	Monolayer Tantalum Oxide on Mesoporous Silica Substrate. <i>ChemistrySelect</i> , 2016 , 1, 3124-3131	1.8	4
27	Identification of hydrogen species on Pt/Al2O3 by in situ inelastic neutron scattering and their reactivity with ethylene. <i>Catalysis Science and Technology</i> , 2021 , 11, 116-123	5.5	4
26	Effect of Surface Reforming via O3 Treatment on the Electrochemical CO2 Reduction Activity of a Ag Cathode. <i>ACS Applied Energy Materials</i> , 2020 , 3, 6552-6560	6.1	3
25	Gold Nanoparticles Coated with Manganese P orphyrin That Effectively Shorten the Longitudinal Relaxation Time of Water Molecules Depending on the Particle Size. <i>Chemistry Letters</i> , 2014 , 43, 1901-1	903	3
24	XAFS Study of Active Tungsten Species on WO3/TiO2 as a Catalyst for Photo-SCR. <i>AIP Conference Proceedings</i> , 2007 ,	O	3
23	Self-Regeneration Process of Ni-Cu Alloy Catalysts during a Three-Way Catalytic Reaction-An Study. <i>ACS Applied Materials & ACS ACS APPLIED & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	2

22	Oxygen Release and Storage Property of Fe-Al Spinel Compounds: A Three-Way Catalytic Reaction over a Supported Rh Catalyst. <i>ACS Applied Materials & District Reaction</i> (13, 24615-24623)	9.5	2
21	Recent Applications of X-ray Absorption Spectroscopy in Combination with High Energy Resolution Fluorescence Detection. <i>Chemistry Letters</i> , 2021 , 50, 1075-1085	1.7	2
20	Local Structure and L- and L-Edge X-ray Absorption Near Edge Structures of Middle Lanthanoid Elements (Eu, Gd, Tb, and Dy) in Their Complex Oxides. <i>Inorganic Chemistry</i> , 2021 , 60, 9359-9367	5.1	2
19	Strong MetalBupport Interaction in Pd/Ca2AlMnO5+ElCatalytic NO Reduction over Mn-Doped CaO Shell. <i>ACS Catalysis</i> , 2021 , 11, 7996-8003	13.1	2
18	Model building of metal oxide surfaces and vibronic coupling density as a reactivity index: Regioselectivity of CO2 adsorption on Ag-loaded Ga2O3. <i>Chemical Physics Letters</i> , 2019 , 715, 239-243	2.5	2
17	Shift of active sites via in-situ photodeposition of chromate achieving highly selective photocatalytic conversion of CO2 by H2O over ZnTa2O6. <i>Applied Catalysis B: Environmental</i> , 2021 , 298, 120508	21.8	2
16	Oxygen Storage Capacity of Co-Doped SrTiO3 with High Redox Performance. <i>Journal of Physical Chemistry C</i> , 2022 , 126, 4415-4422	3.8	2
15	Photocatalytic conversion of CO2 by H2O over heterogeneous photocatalysts 2020 , 179-190		1
14	Propane Metathesis by a Tandem Catalytic System: Dehydrogenation and Hydrogenation over PtSn/Al2O3, and Metathesis over Re2O7/Al2O3. <i>Chemistry Letters</i> , 2012 , 41, 254-256	1.7	1
13	Intermediate Valence State of La0.9Eu0.1Ni2(Si1-xGex)2Compounds. <i>Journal of the Physical Society of Japan</i> , 2003 , 72, 2604-2607	1.5	1
12	Frontiers of Photo-catalysis and Photo-reaction at Solid Surfaces. Photocatalysis by Silica <i>Hyomen Kagaku</i> , 1999 , 20, 73-78		1
11	Effect of Zn in Ag-Loaded Zn-Modified ZnTa2O6 for Photocatalytic Conversion of CO2 by H2O. Journal of Physical Chemistry C, 2021 , 125, 1304-1312	3.8	1
10	A theoretical investigation into the role of catalyst support and regioselectivity of molecular adsorption on a metal oxide surface: NO reduction on Cu/Enlumina. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 2575-2585	3.6	1
9	Real-time observation of the effect of oxygen storage materials on Pd-based three-way catalysts under ideal automobile exhaust conditions: an operando study. <i>Catalysis Science and Technology</i> , 2021 , 11, 6182-6190	5.5	1
8	Regioselectivity of H2 Adsorption on Ga2O3 Surface Based on Vibronic Coupling Density Analysis. Journal of Computer Chemistry Japan, 2018 , 17, 138-141	0.2	1
7	Development of Zinc Hydroxide as an Abundant and Universal Cocatalyst for the Selective Photocatalytic Conversion of CO2 by H2O. <i>ChemCatChem</i> , 2021 , 13, 4313	5.2	1
6	Probing the Entropic Effect in Molecular Noncovalent Interactions between Resin-Bound Polybrominated Arenes and Small Substrates. <i>ChemPlusChem</i> , 2018 , 83, 820-824	2.8	О
5	Observation of Adsorbed Hydrogen Species on Supported Metal Catalysts by Inelastic Neutron Scattering. <i>Topics in Catalysis</i> , 2021 , 64, 660-671	2.3	O

Characterization of High Performance Materials by L-edge XANES in Soft X-ray Region.. *Hyomen Kagaku*, **1998**, 19, 314-320

3	Photocatalysis in Conversion of Greenhouse Gases271-284	
2	Preparation of Ag-Loaded Ga2O3 Particles by the Ultrasonic Reduction Method and their Photocatalytic Activities for CO2 Reduction. <i>Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy</i> , 2021 , 68, 93-98	0.2
1	Low-Temperature NOx Storage Capability of YBaCo4O7+IDriginating from Large Oxygen Nonstoichiometry. <i>Industrial & Discourse Chemistry Research</i> , 2021 , 60, 9817-9823	3.9