Fei Zhuge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3051624/publications.pdf

Version: 2024-02-01

		101384	123241
78	3,822	36	61
papers	citations	h-index	g-index
70	70	70	4421
79	79	79	4421
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Nonvolatile resistive switching in graphene oxide thin films. Applied Physics Letters, 2009, 95, .	1.5	228
2	p-type conduction in N–Al co-doped ZnO thin films. Applied Physics Letters, 2004, 85, 3134-3135.	1.5	219
3	Ultrasensitive Memristive Synapses Based on Lightly Oxidized Sulfide Films. Advanced Materials, 2017, 29, 1606927.	11.1	158
4	Mechanism of nonvolatile resistive switching in graphene oxide thin films. Carbon, 2011, 49, 3796-3802.	5.4	141
5	Resistance switching in polycrystalline BiFeO3 thin films. Applied Physics Letters, 2010, 97, .	1.5	139
6	Effect of top electrodes on photovoltaic properties of polycrystalline BiFeO ₃ based thin film capacitors. Nanotechnology, 2011, 22, 195201.	1.3	136
7	Nonvolatile resistive switching memory based on amorphous carbon. Applied Physics Letters, 2010, 96,	1.5	133
8	Allâ€Optically Controlled Memristor for Optoelectronic Neuromorphic Computing. Advanced Functional Materials, 2021, 31, 2005582.	7.8	123
9	Structural, Chemical, Optical, and Electrical Evolution of SnO _{<i>x</i>} Films Deposited by Reactive rf Magnetron Sputtering. ACS Applied Materials & Samp; Interfaces, 2012, 4, 5673-5677.	4.0	118
10	Mechanism for resistive switching in an oxide-based electrochemical metallization memory. Applied Physics Letters, $2012,100,.$	1.5	117
11	High-temperature tolerance in WTi-Al 2 O 3 cermet-based solar selective absorbing coatings with low thermal emissivity. Nano Energy, 2017, 37, 232-241.	8.2	108
12	Improvement of resistive switching in Cu/ZnO/Pt sandwiches by weakening the randomicity of the formation/rupture of Cu filaments. Nanotechnology, 2011, 22, 275204.	1.3	106
13	Nonvolatile resistive switching in metal/La-doped BiFeO ₃ /Pt sandwiches. Nanotechnology, 2010, 21, 425202.	1.3	104
14	Optoelectronic neuromorphic thin-film transistors capable of selective attention and with ultra-low power dissipation. Nano Energy, 2019, 62, 772-780.	8.2	103
15	Strain and its effect on optical properties of Al-N codoped ZnO films. Journal of Applied Physics, 2006, 99, 023503.	1.1	91
16	Ambipolar inverters using SnO thin-film transistors with balanced electron and hole mobilities. Applied Physics Letters, 2012, 100, .	1.5	90
17	ZnO p-n homojunctions and ohmic contacts to Al–N-co-doped p-type ZnO. Applied Physics Letters, 2005, 87, 092103.	1.5	88
18	Improvement of reproducible resistance switching in polycrystalline tungsten oxide films by <i>in situ</i> oxygen annealing. Applied Physics Letters, 2010, 96, .	1.5	80

#	Article	IF	CITATIONS
19	ZnO light-emitting diodes fabricated on Si substrates with homobuffer layers. Applied Physics Letters, 2007, 91, .	1.5	74
20	Memristive Synapses for Brainâ€Inspired Computing. Advanced Materials Technologies, 2019, 4, 1800544.	3.0	72
21	Synaptic devices based on purely electronic memristors. Applied Physics Letters, 2016, 108, .	1.5	71
22	Nonvolatile bistable resistive switching in a new polyimide bearing 9-phenyl-9H-carbazole pendant. Journal of Materials Chemistry, 2012, 22, 520-526.	6.7	70
23	Semiconducting ZnSnN2 thin films for Si/ZnSnN2 p-n junctions. Applied Physics Letters, 2016, 108, .	1.5	59
24	Electrical characterization of ZnO-based homojunctions. Applied Physics Letters, 2006, 89, 053501.	1.5	56
25	Mechanism for resistive switching in chalcogenide-based electrochemical metallization memory cells. AIP Advances, 2015, 5, .	0.6	56
26	Microstructure dependence of leakage and resistive switching behaviours in Ce-doped BiFeO ₃ thin films. Journal Physics D: Applied Physics, 2011, 44, 415104.	1.3	53
27	Electrochromism of Nanocrystal-in-Glass Tungsten Oxide Thin Films under Various Conduction Cations. Inorganic Chemistry, 2019, 58, 2089-2098.	1.9	53
28	Photonic Synapses for Ultrahighâ€Speed Neuromorphic Computing. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900082.	1.2	53
29	Determination of some basic physical parameters of SnO based on SnO/Si pn heterojunctions. Applied Physics Letters, 2015, 106, .	1.5	52
30	Roles of silver oxide in the bipolar resistance switching devices with silver electrode. Applied Physics Letters, 2011, 98, .	1.5	46
31	Band Offset Engineering in ZnSnN ₂ -Based Heterojunction for Low-Cost Solar Cells. ACS Photonics, 2018, 5, 2094-2099.	3.2	46
32	Electrically controlled electron transfer and resistance switching in reduced graphene oxide noncovalently functionalized with thionine. Journal of Materials Chemistry, 2012, 22, 16422.	6.7	42
33	Templateâ€Free Growth of Wellâ€Ordered Silver Nano Forest/Ceramic Metamaterial Films with Tunable Optical Responses. Advanced Materials, 2017, 29, 1605324.	11.1	42
34	Formation of quasi-aligned ZnCdO nanorods and nanoneedles. Journal of Crystal Growth, 2005, 283, 373-377.	0.7	39
35	Rapid synthesis and photoluminescence of novel ZnO nanotetrapods. Journal of Crystal Growth, 2005, 274, 447-452.	0.7	38
36	Thin Film Solar Cell Based on ZnSnN ₂ /SnO Heterojunction. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1700332.	1.2	38

#	Article	IF	Citations
37	Substrate Biasing Effect on the Physical Properties of Reactive RF-Magnetron-Sputtered Aluminum Oxide Dielectric Films on ITO Glasses. ACS Applied Materials & Samp; Interfaces, 2014, 6, 2255-2261.	4.0	31
38	Silver Nanoparticles with an Armor Layer Embedded in the Alumina Matrix To Form Nanocermet Thin Films with Sound Thermal Stability. ACS Applied Materials & Samp; Interfaces, 2014, 6, 11550-11557.	4.0	29
39	Plasmonic AgAl Bimetallic Alloy Nanoparticle/Al ₂ O ₃ Nanocermet Thin Films with Robust Thermal Stability for Solar Thermal Applications. Advanced Materials Interfaces, 2016, 3, 1600248.	1.9	29
40	Nanocomposite W–4.5%ThO2 thermionic cathode. Materials Letters, 2003, 57, 2776-2779.	1.3	26
41	p-type ZnO films by codoping of nitrogen and aluminum and ZnO-based p–n homojunctions. Journal of Crystal Growth, 2005, 283, 413-417.	0.7	26
42	Flexible Electrochromic V ₂ O ₅ Thin Films with Ultrahigh Coloration Efficiency on Graphene Electrodes. Journal of the Electrochemical Society, 2018, 165, D183-D189.	1.3	25
43	Improved N–Al codoped p-type ZnO thin films by introduction of a homo-buffer layer. Journal of Crystal Growth, 2005, 274, 425-429.	0.7	21
44	Dependence of properties of N–Al codoped p-type ZnO thin films on growth temperature. Applied Surface Science, 2005, 245, 109-113.	3.1	21
45	Anomalous rectification in a purely electronic memristor. Applied Physics Letters, 2016, 109, 143505.	1.5	21
46	Effects of growth ambient on electrical properties of Al–N co-doped p-type ZnO films. Thin Solid Films, 2005, 476, 272-275.	0.8	20
47	Memristors based on amorphous ZnSnO films. Materials Letters, 2019, 249, 169-172.	1.3	20
48	Forming-free resistive switching in a nanoporous nitrogen-doped carbon thin film with ready-made metal nanofilaments. Carbon, 2014, 76, 459-463.	5.4	19
49	Single-crystalline metal filament-based resistive switching in a nitrogen-doped carbon film containing conical nanopores. Applied Physics Letters, 2015, 106, 083104.	1.5	19
50	Control of ZnO nanowire growth and optical properties in a vapor deposition process. Journal of Materials Science and Technology, 2017, 33, 850-855.	5.6	19
51	Broadband Optoelectronic Synaptic Thinâ€Film Transistors Based on Oxide Semiconductors. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900630.	1.2	19
52	The electrical properties of n-ZnO/p-SnO heterojunction diodes. Applied Physics Letters, 2016, 109, 123507.	1.5	17
53	Effect of post-annealing on structural and electrochromic properties of Mo-doped V2O5 thin films. Journal of Sol-Gel Science and Technology, 2016, 77, 604-609.	1.1	17
54	Ultralow operation voltages of a transparent memristor based on bilayer ITO. Applied Physics Letters, 2020, 116, 221602.	1.5	17

#	Article	IF	Citations
55	Al concentration dependence of electrical and photoluminescent properties of co-doped ZnO films. Chemical Physics Letters, 2007, 437, 203-206.	1.2	16
56	Al–N codoping and p-type conductivity in ZnO using different nitrogen sources. Surface and Coatings Technology, 2005, 198, 354-356.	2.2	15
57	Defect-related vibrational and photoluminescence spectroscopy of a codoped ZnO : Al : N film. Physics D: Applied Physics, 2006, 39, 2339-2342.	. Journal	15
58	Reproducibility and stability of N–Al codoped p-type ZnO thin films. Journal of Materials Science, 2006, 41, 467-470.	1.7	15
59	Retinaâ€Inspired Twoâ€Terminal Optoelectronic Neuromorphic Devices with Lightâ€Tunable Shortâ€Term Plasticity for Selfâ€Adjusting Sensing. Advanced Intelligent Systems, 2022, 4, .	3.3	15
60	Carrier localization in codoped ZnO:N:Al films. Solid State Communications, 2006, 138, 542-545.	0.9	14
61	Hybrid oxide brain-inspired neuromorphic devices for hardware implementation of artificial intelligence. Science and Technology of Advanced Materials, 2021, 22, 326-344.	2.8	14
62	Combined control of the cation and anion to make ZnSnON thin films for visible-light phototransistors with high responsivity. Journal of Materials Chemistry C, 2017, 5, 6480-6487.	2.7	12
63	Emerging Artificial Neuron Devices for Probabilistic Computing. Frontiers in Neuroscience, 2021, 15, 717947.	1.4	9
64	Coexistence of two types of metal filaments in oxide memristors. AIP Advances, 2017, 7, .	0.6	8
65	Structural and Electrochromic Properties of Undoped and Mo-Doped V ₂ O ₅ Thin Films by a Two-Electrode Electrodeposition. Journal of Nanoscience and Nanotechnology, 2018, 18, 7502-7507.	0.9	7
66	Broadband hyperbolic metamaterial covering the whole visible-light region. Optics Letters, 2019, 44, 2970.	1.7	7
67	Preparation and photoluminescent investigation of h-BN-like layered material B4CN4. Journal of Crystal Growth, 2008, 310, 3869-3872.	0.7	6
68	Ternary compound B4CN4 prepared by direct nitridation of B4C. Journal of Alloys and Compounds, 2008, 466, 299-303.	2.8	6
69	Proton conducting sodium-alginate-gated oxide thin-film transistors with varying device structure. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 3103-3109.	0.8	6
70	Specific phase modulation and infrared photon confinement in solar selective absorbers. Applied Materials Today, 2020, 18, 100533.	2.3	6
71	Aqueous solution-processed, self-flattening AlOx:Y dielectrics for fully-transparent thin-film transistors. Ceramics International, 2019, 45, 15883-15891.	2.3	5
72	Low-Temperature Synthesis of Micro–Mesoporous TiO2–SiO2 Composite Film Containing Fe–N Co-Doped Anatase Nanocrystals for Photocatalytic NO Removal. Catalysis Letters, 2021, 151, 2396-2407.	1.4	4

#	Article	lF	CITATIONS
73	Advances in Resistive Switching Memories Based on Graphene Oxide. , 0, , .		3
74	Optoelectronic Neuromorphic Computing: Allâ€Optically Controlled Memristor for Optoelectronic Neuromorphic Computing (Adv. Funct. Mater. 4/2021). Advanced Functional Materials, 2021, 31, 2170027.	7.8	1
75	Bipolar resistance switching in multiferroic BiFeO3 polycrystalline films. , 2010, , .		O
76	Non-Volatile Resistive Switching in Graphene Oxide Thin Films. , 0, , .		0
77	The same batch enabled threshold voltage tuning for vertically†or laterallyâ€gated transparent InZnO thinâ€film transistors. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600918.	0.8	O
78	Ultrasensitive Memristive Synapses Based on Lightly Oxidized Sulfide Films. , 2017, , .		O