Andras Guttman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3051187/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-performance capillary electrophoresis in the biological sciences. Biomedical Applications, 1989, 492, 585-614.	1.7	311
2	High-performance capillary electrophoresis of SDS-protein complexes using UV-transparent polymer networks. Analytical Chemistry, 1992, 64, 2665-2671.	6.5	239
3	High-Resolution Capillary Gel Electrophoresis of Reducing Oligosaccharides Labeled with 1-Aminopyrene-3,6,8-trisulfonate. Analytical Biochemistry, 1996, 233, 234-242.	2.4	185
4	Ultra Performance Liquid Chromatographic Profiling of Serum <i>N</i> -Glycans for Fast and Efficient Identification of Cancer Associated Alterations in Glycosylation. Analytical Chemistry, 2010, 82, 10208-10215.	6.5	162
5	High-resolution carbohydrate profiling by capillary gel electrophoresis. Nature, 1996, 380, 461-462.	27.8	134
6	Recent advances in column coatings for capillary electrophoresis of proteins. TrAC - Trends in Analytical Chemistry, 2017, 90, 38-44.	11.4	105
7	Rapid Magnetic Bead Based Sample Preparation for Automated and High Throughput N-Glycan Analysis of Therapeutic Antibodies. Analytical Chemistry, 2014, 86, 5682-5687.	6.5	98
8	The use of magnetic nanoparticles in cancer theranostics: Toward handheld diagnostic devices. Biotechnology Advances, 2016, 34, 354-361.	11.7	96
9	Improved sample preparation method for glycan analysis of glycoproteins by CE‣IF and CEâ€MS. Electrophoresis, 2010, 31, 1389-1395.	2.4	90
10	NIST Interlaboratory Study on Glycosylation Analysis of Monoclonal Antibodies: Comparison of Results from Diverse Analytical Methods. Molecular and Cellular Proteomics, 2020, 19, 11-30.	3.8	87
11	High-Throughput Profiling of the Serum N-Glycome on Capillary Electrophoresis Microfluidics Systems: Toward Clinical Implementation of GlycoHepatoTest. Analytical Chemistry, 2010, 82, 7408-7415.	6.5	82
12	Effect of temperature on the separation of DNA restriction fragments in capillary gel electrophoresis. Journal of Chromatography A, 1991, 559, 285-294.	3.7	80
13	DNA sequencing by CE. Electrophoresis, 2009, 30, S196-202.	2.4	75
14	Multiplexed Analytical Glycomics: Rapid and Confident IgG <i>N</i> -Glycan Structural Elucidation. Journal of Proteome Research, 2011, 10, 3820-3829.	3.7	74
15	Recent advances in glycoinformatic platforms for glycomics and glycoproteomics. Current Opinion in Structural Biology, 2020, 62, 56-69.	5.7	74
16	Rapid Release of N-Linked Glycans from Glycoproteins by Pressure-Cycling Technology. Analytical Chemistry, 2010, 82, 2588-2593.	6.5	67
17	Acid-catalyzed reductive amination of aldoses with 8-aminopyrene-1,3,6-trisulfonate. Electrophoresis, 1996, 17, 347-351.	2.4	59
18	Comparison of separation techniques for the elucidation of IgG N-glycans pooled from healthy mammalian species. Carbohydrate Research, 2014, 389, 174-185	2.3	59

#	Article	IF	CITATIONS
19	Unraveling the Glyco-Puzzle: Glycan Structure Identification by Capillary Electrophoresis. Analytical Chemistry, 2013, 85, 4228-4238.	6.5	52
20	Oriented immobilization of peptide-N-glycosidase F on a monolithic support for glycosylation analysis. Journal of Chromatography A, 2013, 1322, 54-61.	3.7	46
21	Sample Preparation for the Analysis of Complex Carbohydrates by Multicapillary Gel Electrophoresis with Light-Emitting Diode Induced Fluorescence Detection. Analytical Chemistry, 2008, 80, 4241-4246.	6.5	44
22	Biomedical analysis of formalin-fixed, paraffin-embedded tissue samples: The Holy Grail for molecular diagnostics. Journal of Pharmaceutical and Biomedical Analysis, 2018, 155, 125-134.	2.8	44
23	Capillary Electrophoresis-Mass Spectrometry at Trial by Metabo-Ring: Effective Electrophoretic Mobility for Reproducible and Robust Compound Annotation. Analytical Chemistry, 2020, 92, 14103-14112.	6.5	44
24	Boronic acid–lectin affinity chromatography. 1. Simultaneous glycoprotein binding with selective or combined elution. Analytical and Bioanalytical Chemistry, 2007, 389, 2097-2102.	3.7	43
25	Capillary sodium dodecyl sulfate gel electrophoresis of proteins I. Reproducibility and stability. Journal of Chromatography A, 1994, 676, 219-226.	3.7	42
26	Rapid N -glycan release from glycoproteins using immobilized PNGase F microcolumns. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1032, 139-143.	2.3	41
27	Automated N-Glycosylation Sequencing Of Biopharmaceuticals By Capillary Electrophoresis. Scientific Reports, 2017, 7, 11663.	3.3	40
28	Exoglycosidase matrix-mediated sequencing of a complex glycan pool by capillary electrophoresis. Journal of Chromatography A, 1997, 781, 547-554.	3.7	38
29	Influence of molecular configuration and conformation on the electromigration of oligosaccharides in narrow bore capillaries. Electrophoresis, 2012, 33, 1000-1007.	2.4	38
30	Liquid phase separation methods for N-glycosylation analysis of glycoproteins of biomedical and biopharmaceutical interest. A critical review. Analytica Chimica Acta, 2016, 943, 8-16.	5.4	38
31	Chipâ€based CE for rapid separation of 8â€aminopyreneâ€1,3,6â€trisulfonic acid (APTS) derivatized glycans. Electrophoresis, 2010, 31, 3783-3786.	2.4	37
32	Fully Automated Sample Preparation for Ultrafast N-Glycosylation Analysis of Antibody Therapeutics. Journal of the Association for Laboratory Automation, 2016, 21, 281-286.	2.8	36
33	Rapid Level-3 Characterization of Therapeutic Antibodies by Capillary Electrophoresis Electrospray Ionization Mass Spectrometry. Journal of Chromatographic Science, 2015, 53, 443-449.	1.4	35
34	Multi-Site N-glycan mapping study 1: Capillary electrophoresis – laser induced fluorescence. MAbs, 2016, 8, 56-64.	5.2	34
35	Capillary electrophoresis and the biopharmaceutical industry: Therapeutic protein analysis and characterization. TrAC - Trends in Analytical Chemistry, 2021, 144, 116407.	11.4	34
36	Triple-Internal Standard Based Glycan Structural Assignment Method for Capillary Electrophoresis Analysis of Carbohydrates. Analytical Chemistry, 2016, 88, 11364-11367.	6.5	31

#	Article	IF	CITATIONS
37	Capillary electrophoresis separation of oligosaccharides: I. Effect of operational variables. Electrophoresis, 1994, 15, 1518-1522.	2.4	30
38	Effect of the Quantity and Linkage Position of Mannose(α1,2) Residues in Capillary Gel Electrophoresis of High-Mannose-Type Oligosaccharides. Analytical Biochemistry, 1996, 235, 236-239.	2.4	30
39	On the glycosylation aspects of biosimilarity. Drug Discovery Today, 2018, 23, 616-625.	6.4	30
40	Analysis of haptoglobin <i>N</i> â€glycome alterations in inflammatory and malignant lung diseases by capillary electrophoresis. Electrophoresis, 2013, 34, 2287-2294.	2.4	29
41	Evaporative fluorophore labeling of carbohydrates via reductive amination. Talanta, 2018, 185, 365-369.	5.5	29
42	Capillary electrophoresis in the N-glycosylation analysis of biopharmaceuticals. TrAC - Trends in Analytical Chemistry, 2013, 48, 132-143.	11.4	27
43	A fully automated linear polyacrylamide coating and regeneration method for capillary electrophoresis of proteins. Electrophoresis, 2016, 37, 3154-3159.	2.4	25
44	Comparative analysis of the human serum N-glycome in lung cancer, COPD and their comorbidity using capillary electrophoresis. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1137, 121913.	2.3	25
45	Applications of capillary electrophoresis for biopharmaceutical product characterization. Electrophoresis, 2022, 43, 143-166.	2.4	25
46	GUcal: An integrated application for capillary electrophoresis based glycan analysis. Electrophoresis, 2015, 36, 3094-3096.	2.4	23
47	Sample Preparation Scale-Up for Deep N-glycomic Analysis of Human Serum by Capillary Electrophoresis and CE-ESI-MS*. Molecular and Cellular Proteomics, 2019, 18, 2524-2531.	3.8	23
48	Fundamentals of Capillary Electrophoretic Migration and Separation of SDS Proteins in Borate Cross-Linked Dextran Gels. Analytical Chemistry, 2021, 93, 9267-9276.	6.5	23
49	N-Glycosylation of monoclonal antibody therapeutics: A comprehensive review on significance and characterization. Analytica Chimica Acta, 2022, 1209, 339828.	5.4	23
50	Rapid Determination of Full and Empty Adeno-Associated Virus Capsid Ratio by Capillary Isoelectric Focusing. Current Molecular Medicine, 2021, 20, 814-820.	1.3	22
51	Ultrasensitive Capillary Electrophoretic Analysis of Potentially Immunogenic Carbohydrate Residues in Biologics: Galactose-α-1,3-Galactose Containing Oligosaccharides. Molecular Pharmaceutics, 2012, 9, 1612-1619.	4.6	21
52	Characterization of a Porous Nano-electrospray Capillary Emitter at Ultra-low Flow Rates. Journal of Chromatographic Science, 2017, 55, 47-51.	1.4	21
53	Glycosimilarity assessment of biotherapeutics 1: Quantitative comparison of the N -glycosylation of the innovator and a biosimilar version of etanercept. Journal of Pharmaceutical and Biomedical Analysis, 2018, 153, 182-185.	2.8	21
54	Large-scale carbohydrate analysis by capillary array electrophoresis: PartÂ2. Data normalization and quantification. Electrophoresis, 2004, 25, 3122-3127.	2.4	19

#	Article	IF	CITATIONS
55	Monoclonal antibody proteomics: Discovery and prevalidation of chronic obstructive pulmonary disease biomarkers in a single step. Electrophoresis, 2007, 28, 4401-4406.	2.4	19
56	High-throughput analysis of therapeutic and diagnostic monoclonal antibodies by multicapillary SDS gel electrophoresis in conjunction with covalent fluorescent labeling. Analytical and Bioanalytical Chemistry, 2012, 404, 1485-1494.	3.7	19
57	Effect of the Monomer Cross-Linker Ratio on the Separation Selectivity of Monoclonal Antibody Subunits in Sodium Dodecyl Sulfate Capillary Gel Electrophoresis. Analytical Chemistry, 2021, 93, 3535-3541.	6.5	19
58	Effect of Separation Temperature on Structure Specific Glycan Migration in Capillary Electrophoresis. Analytical Chemistry, 2015, 87, 11630-11634.	6.5	18
59	Quantitative assessment of mAb Fc glycosylation of CQA importance by capillary electrophoresis. Electrophoresis, 2018, 39, 2340-2343.	2.4	18
60	Imaging Laser-Induced Fluorescence Detection at the Taylor Cone of Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2019, 91, 7738-7743.	6.5	18
61	Glycoprotein biomarkers and analysis in chronic obstructive pulmonary disease and lung cancer with special focus on serum immunoglobulin G. Clinica Chimica Acta, 2020, 506, 204-213.	1.1	18
62	Recent advances in the analysis of human milk oligosaccharides by liquid phase separation methods. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1162, 122497.	2.3	18
63	Sialic Acid Speciation Using Capillary Electrophoresis: Optimization of Analyte Derivatization and Separation. Analytical Chemistry, 2012, 84, 7638-7642.	6.5	17
64	Capillary electrophoresis analysis of Nâ€glycosylation changes of serum paraproteins in multiple myeloma. Electrophoresis, 2017, 38, 2115-2123.	2.4	17
65	Ultrafast high-resolution analysis of human milk oligosaccharides by multicapillary gel electrophoresis. Food Chemistry, 2021, 341, 128200.	8.2	17
66	Structural identification of N-linked carbohydrates using the GUcal application: A tutorial. Journal of Proteomics, 2018, 171, 107-115.	2.4	16
67	Multi Capillary SDS-Gel Electrophoresis for the Analysis of Fluorescently Labeled mAb preparations: a high throughput quality control process for the production of QuantiPlasma and PlasmaScan mAb libraries. Electrophoresis, 2014, 35, n/a-n/a.	2.4	15
68	Glycan microarrays: new angles and new strategies. Analyst, The, 2014, 139, 2650.	3.5	15
69	Multilevel capillary gel electrophoresis characterization of new antibody modalities. Analytica Chimica Acta, 2021, 1166, 338492.	5.4	15
70	Comparative glycoprofiling of HIV gp120 immunogens by capillary electrophoresis and MALDI mass spectrometry. Electrophoresis, 2015, 36, 1305-1313.	2.4	14
71	High-Resolution Glycan Analysis by Temperature Gradient Capillary Electrophoresis. Analytical Chemistry, 2017, 89, 2201-2204.	6.5	14
72	Analysis of the oligosaccharide composition in wort samples by capillary electrophoresis with laser induced fluorescence detection. Food Chemistry, 2018, 256, 129-132.	8.2	14

#	Article	IF	CITATIONS
73	Modeling of cell sorting and rare cell capture with microfabricated biodevices. Trends in Biotechnology, 2013, 31, 696-703.	9.3	13
74	Comparative core fucosylation analysis of some major therapeutic antibody <i>N</i> â€glycans by direct infusion ESlâ€MS and CE–LIF detection. Journal of Separation Science, 2013, 36, 2862-2867.	2.5	13
75	Smartphone Cortex Controlled Real-Time Image Processing and Reprocessing for Concentration Independent LED Induced Fluorescence Detection in Capillary Electrophoresis. Analytical Chemistry, 2017, 89, 10673-10678.	6.5	13
76	N-glycosylation analysis of biopharmaceuticals by multicapillary gel electrophoresis: Generation and application of a new glucose unit database. Journal of Pharmaceutical and Biomedical Analysis, 2020, 178, 112892.	2.8	13
77	The Effect of Temperature in Sodium Dodecyl Sulfate Capillary Gel Electrophoresis of Protein Therapeutics. Analytical Chemistry, 2020, 92, 4023-4028.	6.5	13
78	Combination of IgG <i>N</i> â€glycomics and corresponding transcriptomics data to identify antiâ€TNFâ€Î± treatment responders in inflammatory diseases. Electrophoresis, 2015, 36, 1330-1335.	2.4	12
79	Nâ€Glycosylation analysis of formalin fixed paraffin embedded samples by capillary electrophoresis. Electrophoresis, 2016, 37, 2292-2296.	2.4	12
80	A novel carbohydrate labeling method utilizing transfer hydrogenation-mediated reductive amination. Journal of Pharmaceutical and Biomedical Analysis, 2017, 142, 324-327.	2.8	12
81	Recent Advances in the Analysis Full/Empty Capsid Ratio and Genome Integrity of Adeno-associated Virus (AAV) Gene Delivery Vectors. Current Molecular Medicine, 2021, 20, 806-813.	1.3	12
82	Tilted pillar array fabrication by the combination of proton beam writing and soft lithography for microfluidic cell capture: Part 1 Design and feasibility. Electrophoresis, 2016, 37, 498-503.	2.4	11
83	On-line enrichment of N-glycans by immobilized metal-affinity monolith for capillary electrophoresis analysis. Analytica Chimica Acta, 2020, 1134, 1-9.	5.4	11
84	Fractionation of the human plasma proteome for monoclonal antibody proteomicsâ€based biomarker discovery. Electrophoresis, 2011, 32, 1916-1925.	2.4	10
85	Toward the generation of an aminonaphthalene trisulfonate labeled <i>N</i> â€glycan database for capillary gel electrophoresis analysis of carbohydrates. Electrophoresis, 2014, 35, 2222-2228.	2.4	10
86	Continuous-flow-based microfluidic systems for therapeutic monoclonal antibody production and organ-on-a-chip drug testing. Journal of Flow Chemistry, 2017, 7, 118-123.	1.9	10
87	Effect of the flow profile on separation efficiency in pressureâ€assisted reversedâ€polarity capillary zone electrophoresis of anions: Simulation and experimental evaluation. Journal of Separation Science, 2018, 41, 2473-2478.	2.5	10
88	High sensitivity capillary electrophoresis with fluorescent detection for glycan mapping. Journal of Chromatography A, 2021, 1657, 462593.	3.7	10
89	Numerical modeling of capillary electrophoresis - electrospray mass spectrometry interface design. Mass Spectrometry Reviews, 2015, 34, 558-569.	5.4	9
90	Activation energy associated with the electromigration of oligosaccharides through viscosity modifier and polymeric additive containing background electrolytes. Electrophoresis, 2016, 37, 573-578.	2.4	9

#	Article	IF	CITATIONS
91	Rapid capillary gel electrophoresis analysis of human milk oligosaccharides for food additive manufacturing in-process control. Analytical and Bioanalytical Chemistry, 2021, 413, 1595-1603.	3.7	9
92	Computational Fluid Dynamics-Based Design of a Microfabricated Cell Capture Device. Journal of Chromatographic Science, 2015, 53, 411-416.	1.4	8
93	Molecular glycopathology by capillary electrophoresis: Analysis of the Nâ€glycome of formalinâ€fixed paraffinâ€embedded mouse tissue samples. Electrophoresis, 2017, 38, 1602-1608.	2.4	8
94	Multiâ€site Nâ€Glycan mapping study 2: UHPLC. Electrophoresis, 2018, 39, 998-1005.	2.4	8
95	Capillary sodium dodecyl sulfate gel electrophoresis of proteins: Introducing the three dimensional Ferguson method. Analytica Chimica Acta, 2021, 1183, 338958.	5.4	8
96	Neoglycoproteins as carbohydrate antigens: Synthesis, analysis, and polyclonal antibody response. Electrophoresis, 2013, 34, 2379-2386.	2.4	7
97	High-Throughput N-Glycan Analysis with Rapid Magnetic Bead-Based Sample Preparation. Methods in Molecular Biology, 2017, 1503, 265-272.	0.9	7
98	Expanding the capillary electrophoresis-based glucose unit database of the GUcal app. Glycobiology, 2020, 30, 362-364.	2.5	7
99	N-Glycosylation Alteration of Serum and Salivary Immunoglobulin A Is a Possible Biomarker in Oral Mucositis. Journal of Clinical Medicine, 2020, 9, 1747.	2.4	7
100	Nâ€glycosylation of blood coagulation factor XIII subunit B and its functional consequence. Journal of Thrombosis and Haemostasis, 2020, 18, 1302-1309.	3.8	7
101	Separation based characterization methods for the N-glycosylation analysis of prostate-specific antigen. Journal of Pharmaceutical and Biomedical Analysis, 2021, 194, 113797.	2.8	7
102	High Throughput Multiplex SNP-analysis in Chronic Obstructive Pulmonary Disease and Lung Cancer. Current Molecular Medicine, 2020, 20, 185-193.	1.3	7
103	Potential L-Type Voltage–Operated Calcium Channel Blocking Effect of Drotaverine on Functional Models. Journal of Pharmacology and Experimental Therapeutics, 2016, 359, 442-451.	2.5	6
104	Machine Learning Based Analysis of Human Serum N-glycome Alterations to Follow up Lung Tumor Surgery. Cancers, 2020, 12, 3700.	3.7	6
105	Vaccine Plasmid Topology Monitoring by Capillary Gel Electrophoresis. Current Molecular Medicine, 2021, 20, 798-805.	1.3	6
106	Modification of Hemodialysis Membranes for Efficient Circulating Tumor Cell Capture for Cancer Therapy. Molecules, 2021, 26, 4845.	3.8	6
107	N-glycosylation structure – function characterization of omalizumab, an anti-asthma biotherapeutic product. Journal of Pharmaceutical and Biomedical Analysis, 2022, 209, 114483.	2.8	6
108	Effect of the elapsed time between sampling and formalin fixation on the N â€glycosylation profile of mouse tissue specimens. Electrophoresis, 2019, 40, 3057-3061.	2.4	5

#	Article	IF	CITATIONS
109	N-glycomic Analysis of Z(IgA1) Partitioned Serum and Salivary Immunoglobulin A by Capillary Electrophoresis. Current Molecular Medicine, 2021, 20, 781-788.	1.3	5
110	Proteomic and Glycomic Markers to Differentiate Lung Adenocarcinoma from COPD. Current Medicinal Chemistry, 2020, 27, 3302-3313.	2.4	5
111	Capillary Sodium Dodecyl Sulfate Agarose Gel Electrophoresis of Proteins. Gels, 2022, 8, 67.	4.5	5
112	The effect of simulated space radiation on the <i>N</i> â€glycosylation of human immunoglobulin G1. Electrophoresis, 2018, 39, 2872-2876.	2.4	4
113	Quantitative comparison of the N-glycosylation of therapeutic glycoproteins using the Glycosimilarity Index. A tutorial. TrAC - Trends in Analytical Chemistry, 2020, 122, 115728.	11.4	4
114	Integrated workflow for urinary prostate specific antigen N-glycosylation analysis using sdAb partitioning and downstream capillary electrophoresis separation. Analytica Chimica Acta, 2021, 1184, 338892.	5.4	4
115	Determination of complex type free, nonâ€conjugated oligosaccharide glucose unit values in tomato xylem sap for early detection of nutrient deficiency. Electrophoresis, 2021, 42, 200-205.	2.4	3
116	N-glycan Analysis in Molecular Medicine: Innovator and Biosimilar Protein Therapeutics. Current Molecular Medicine, 2021, 20, 828-839.	1.3	3
117	Diabetes-specific Modulation of Peripheral Blood Gene Expression Signatures in Colorectal Cancer. Current Molecular Medicine, 2021, 20, 773-780.	1.3	3
118	N-Glycosylation Profiling of Human Blood in Type 2 Diabetes by Capillary Electrophoresis: A Preliminary Study. Molecules, 2021, 26, 6399.	3.8	3
119	On the electromigration of charged fluorophore″abeled oligosaccharides in polyethylene oxide solutions. Electrophoresis, 2016, 37, 2347-2351.	2.4	2
120	Multilevel Characterization of Antibody-Ligand Conjugates by CESI-MS. Current Molecular Medicine, 2021, 20, 789-797.	1.3	2
121	Capillary Electrophoresis-Based N-Glycosylation Analysis in the Biomedical and Biopharmaceutical Fields. Advances in Experimental Medicine and Biology, 2021, 1336, 129-137.	1.6	2
122	Introduction of a Capillary Gel Electrophoresis-Based Workflow for Biotherapeutics Characterization: Size, Charge, and N-Glycosylation Variant Analysis of Bamlanivimab, an Anti-SARS-CoV-2 Product. Frontiers in Bioengineering and Biotechnology, 2022, 10, 839374.	4.1	2
123	Tilted pillar array fabrication by the combination of proton beam writing and soft lithography for microfluidic cell capture Part 2: Image sequence analysis based evaluation and biological application. Electrophoresis, 2018, 39, 534-539.	2.4	1
124	Commentary regarding "Decision support algorithm for the selection of analytical methods in organic compounds detection for future extraterrestrial exploratory missions― Electrophoresis, 2019, 40, 2662-2663.	2.4	1
125	Modeling of the Desialylated Human Serum N-glycome for Molecular Diagnostic Applications in Inflammatory and Malignant Lung Diseases. Current Molecular Medicine, 2021, 20, 765-772.	1.3	1

Basic principles of capillary gel electrophoresis. , 2022, , 21-56.

#	Article	IF	CITATIONS
127	Immobilized exoglycosidase matrix mediated solid phase glycan sequencing. Analytica Chimica Acta, 2022, 1215, 339906.	5.4	1
128	Assessment of the Airway Smooth Muscle Relaxant Effect of Drotaverine. Pharmacology, 2018, 101, 163-169.	2.2	0
129	Authors' Reply to the Commentary in the journal of Electrophoresis regarding "The effect of simulated space radiation on the Nâ€glycosylation of human immunoglobulin G1―by J.J. Bevelacqua and S.M.J. Mortazavi. Electrophoresis, 2018, 39, 2851-2853.	2.4	0
130	Database search assisted N-glycan structure identification. , 2021, , 843-858.		0
131	Evaluation of Possible Processing Time Effects on the Global N-Glycosylation Profile of Human Blood Samples. Current Molecular Medicine, 2021, 20, 840-846.	1.3	0
132	Utilization of Analytical Omics Tools in the Molecular Diagnostics of Multiple Myeloma. Current Molecular Medicine, 2018, 18, 260-272.	1.3	0
133	Separation matrix and column technology. , 2022, , 57-128.		0