Marco Jost

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3051103/publications.pdf Version: 2024-02-01

MARCO LOST

#	Article	IF	CITATIONS
1	Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq. Cell, 2022, 185, 2559-2575.e28.	28.9	169
2	CRISPR-based functional genomics in human dendritic cells. ELife, 2021, 10, .	6.0	10
3	Genome-wide CRISPRi screening identifies OCIAD1 as a prohibitin client and regulatory determinant of mitochondrial Complex III assembly in human cells. ELife, 2021, 10, .	6.0	20
4	High-content imaging-based pooled CRISPR screens in mammalian cells. Journal of Cell Biology, 2021, 220, .	5.2	53
5	Mismatch-CRISPRi Reveals the Co-varying Expression-Fitness Relationships of Essential Genes in Escherichia coli and Bacillus subtilis. Cell Systems, 2020, 11, 523-535.e9.	6.2	72
6	Pharmaceutical-Grade Rigosertib Is a Microtubule-Destabilizing Agent. Molecular Cell, 2020, 79, 191-198.e3.	9.7	22
7	GIGYF2 and 4EHP Inhibit Translation Initiation of Defective Messenger RNAs to Assist Ribosome-Associated Quality Control. Molecular Cell, 2020, 79, 950-962.e6.	9.7	119
8	Titrating gene expression using libraries of systematically attenuated CRISPR guide RNAs. Nature Biotechnology, 2020, 38, 355-364.	17.5	108
9	Exploring genetic interaction manifolds constructed from rich single-cell phenotypes. Science, 2019, 365, 786-793.	12.6	155
10	DNA repair enzymes ALKBH2, ALKBH3,Âand AlkB oxidize 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine in vitro. Nucleic Acids Research, 2019, 47, 5522-5529.	14.5	51
11	Molecular recording of mammalian embryogenesis. Nature, 2019, 570, 77-82.	27.8	257
12	CRISPR Approaches to Small Molecule Target Identification. ACS Chemical Biology, 2018, 13, 366-375.	3.4	68
13	Combined CRISPRi/a-Based Chemical Genetic Screens Reveal that Rigosertib Is a Microtubule-Destabilizing Agent. Molecular Cell, 2017, 68, 210-223.e6.	9.7	197
14	A New Facet of Vitamin B ₁₂ : Gene Regulation by Cobalamin-Based Photoreceptors. Annual Review of Biochemistry, 2017, 86, 485-514.	11.1	85
15	A Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response. Cell, 2016, 167, 1867-1882.e21.	28.9	819
16	Structure of the Catalytic Domain of the Class I Polyhydroxybutyrate Synthase from Cupriavidus necator. Journal of Biological Chemistry, 2016, 291, 25264-25277.	3.4	69
17	Adaptive Response Enzyme AlkB Preferentially Repairs 1-Methylguanine and 3-Methylthymine Adducts in Double-Stranded DNA. Chemical Research in Toxicology, 2016, 29, 687-693.	3.3	38
18	Next-generation sequencing reveals the biological significance of the <i>N</i> Â2,3-ethenoguanine lesion <i>in vivo</i> . Nucleic Acids Research, 2015, 43, 5489-5500.	14.5	39

Marco Jost

#	Article	IF	CITATIONS
19	Visualization of a radical B ₁₂ enzyme with its G-protein chaperone. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2419-2424.	7.1	29
20	Structural basis for gene regulation by a B12-dependent photoreceptor. Nature, 2015, 526, 536-541.	27.8	149
21	Structural Basis for Substrate Specificity in Adenosylcobalamin-dependent Isobutyryl-CoA Mutase and Related Acyl-CoA Mutases. Journal of Biological Chemistry, 2015, 290, 26882-26898.	3.4	24
22	Electrochemical Characterization of Escherichia coli Adaptive Response Protein AidB. International Journal of Molecular Sciences, 2012, 13, 16899-16915.	4.1	6
23	Structure of Adenovirus Type 21 Knob in Complex with CD46 Reveals Key Differences in Receptor Contacts among Species B Adenoviruses. Journal of Virology, 2010, 84, 3189-3200.	3.4	40
24	Structureâ^'Function Analysis of an Enzymatic Prenyl Transfer Reaction Identifies a Reaction Chamber with Modifiable Specificity. Journal of the American Chemical Society, 2010, 132, 17849-17858.	13.7	87