Tingbin Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3051092/publications.pdf

Version: 2024-02-01

28 papers 2,467 citations

331538
21
h-index

501076 28 g-index

28 all docs 28 docs citations

28 times ranked

3973 citing authors

#	Article	IF	CITATIONS
1	Inverted polymer solar cells with 8.4% efficiency by conjugated polyelectrolyte. Energy and Environmental Science, 2012, 5, 8208.	15.6	616
2	Facile Synthesis of Nickel–Iron/Nanocarbon Hybrids as Advanced Electrocatalysts for Efficient Water Splitting. ACS Catalysis, 2016, 6, 580-588.	5. 5	354
3	Solution-Processed Zinc Oxide Thin Film as a Buffer Layer for Polymer Solar Cells with an Inverted Device Structure. Journal of Physical Chemistry C, 2010, 114, 6849-6853.	1.5	198
4	Toward Highly Sensitive Polymer Photodetectors by Molecular Engineering. Advanced Materials, 2015, 27, 6496-6503.	11.1	136
5	Novel Silafluorene-Based Conjugated Polymers with Pendant Acceptor Groups for High Performance Solar Cells. Macromolecules, 2010, 43, 5262-5268.	2.2	134
6	Synthesis of Quinoxaline-Based Donorâ^'Acceptor Narrow-Band-Gap Polymers and Their Cyclized Derivatives for Bulk-Heterojunction Polymer Solar Cell Applications. Macromolecules, 2011, 44, 894-901.	2.2	127
7	Materials Design via Optimized Intramolecular Noncovalent Interactions for High-Performance Organic Semiconductors. Chemistry of Materials, 2016, 28, 2449-2460.	3.2	99
8	Polymer Solar Cells with a Lowâ€Temperatureâ€Annealed Sol–Gelâ€Derived MoO _x Film as a Hole Extraction Layer. Advanced Energy Materials, 2012, 2, 523-527.	10.2	97
9	Headâ€toâ€Head Linkage Containing Bithiopheneâ€Based Polymeric Semiconductors for Highly Efficient Polymer Solar Cells. Advanced Materials, 2016, 28, 9969-9977.	11.1	93
10	Molecular Engineering on Conjugated Side Chain for Polymer Solar Cells with Improved Efficiency and Accessibility. Chemistry of Materials, 2016, 28, 5887-5895.	3.2	65
11	High-Performance Fullerene-Free Polymer Solar Cells Featuring Efficient Photocurrent Generation from Dual Pathways and Low Nonradiative Recombination Loss. ACS Energy Letters, 2019, 4, 8-16.	8.8	62
12	Solution-Processed Ultrasensitive Polymer Photodetectors with High External Quantum Efficiency and Detectivity. ACS Applied Materials & Samp; Interfaces, 2012, 4, 3701-3705.	4.0	57
13	Solution-processed near-infrared polymer photodetectors with an inverted device structure. Organic Electronics, 2012, 13, 2929-2934.	1.4	45
14	Zinc Oxide Nanowire As an Electron-Extraction Layer for Broadband Polymer Photodetectors with an Inverted Device Structure. Journal of Physical Chemistry C, 2012, 116, 13650-13653.	1.5	44
15	Thieno[3,4- <i>c</i>]pyrrole-4,6(5 <i>H</i>)-dione Polymers with Optimized Energy Level Alignments for Fused-Ring Electron Acceptor Based Polymer Solar Cells. Chemistry of Materials, 2017, 29, 5636-5645.	3.2	43
16	A non-fullerene small molecule processed with green solvent as an electron transporting material for high efficiency p-i-n perovskite solar cells. Organic Electronics, 2018, 52, 200-205.	1.4	40
17	Head-to-Head Linkage Containing Dialkoxybithiophene-Based Polymeric Semiconductors for Polymer Solar Cells with Large Open-Circuit Voltages. Macromolecules, 2017, 50, 137-150.	2.2	37
18	In Situ Tin(II) Complex Antisolvent Process Featuring Simultaneous Quasi ore–Shell Structure and Heterojunction for Improving Efficiency and Stability of Lowâ€Bandgap Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903013.	10.2	31

#	ARTICLE	IF	CITATION
19	Recent Advances in Interface Engineering for Planar Heterojunction Perovskite Solar Cells. Molecules, 2016, 21, 837.	1.7	28
20	An efficient and thickness insensitive cathode interface material for high performance inverted perovskite solar cells with 17.27% efficiency. Journal of Materials Chemistry C, 2017, 5, 5949-5955.	2.7	24
21	Rational design of conjugated side chains for high-performance all-polymer solar cells. Molecular Systems Design and Engineering, 2018, 3, 103-112.	1.7	24
22	Methyl Thioether Functionalization of a Polymeric Donor for Efficient Solar Cells Processed from Non-Halogenated Solvents. Chemistry of Materials, 2019, 31, 3025-3033.	3.2	23
23	Enhanced performance of inverted perovskite solar cells using solution-processed carboxylic potassium salt as cathode buffer layer. Organic Electronics, 2017, 45, 97-103.	1.4	20
24	Pbl ₂ platelets for inverted planar organolead Halide Perovskite solar cells via ultrasonic spray deposition. Semiconductor Science and Technology, 2017, 32, 074003.	1.0	18
25	A novel volumetric absorber integrated with low-cost D-Mannitol and acetylene-black nanoparticles for solar-thermal-electricity generation. Solar Energy Materials and Solar Cells, 2020, 207, 110366.	3.0	18
26	Inverted polymer solar cells with a solution-processed zinc oxide thin film as an electron collection layer. Science China Chemistry, 2012, 55, 755-759.	4.2	14
27	A surfactant-free recipe for shape-controlled synthesis of CdSe nanocrystals. Nanotechnology, 2011, 22, 045604.	1.3	13
28	Dithieno[3,2-b:2′,3′-d]pyran-containing organic D–π–A sensitizers for dye-sensitized solar cells. RSC Advances, 2014, 4, 62472-62475.	1.7	7