Yuri E Corilo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3050760/publications.pdf

Version: 2024-02-01

218677 265206 1,851 42 49 26 h-index citations g-index papers 49 49 49 2311 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Challenges in Bioinformatics Workflows for Processing Microbiome Omics Data at Scale. Frontiers in Bioinformatics, 2022, $1, \dots$	2.1	6
2	Online Coupling of Liquid Chromatography with Fourier Transform Ion Cyclotron Resonance Mass Spectrometry at 21 T Provides Fast and Unique Insight into Crude Oil Composition. Analytical Chemistry, 2021, 93, 13749-13754.	6.5	19
3	Probing Aggregation Tendencies in Asphaltenes by Gel Permeation Chromatography. Part 2: Online Detection by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Inductively Coupled Plasma Mass Spectrometry. Energy & Dels, 2020, 34, 10915-10925.	5.1	26
4	The National Microbiome Data Collaborative: enabling microbiome science. Nature Reviews Microbiology, 2020, 18, 313-314.	28.6	42
5	Characterization of Ketones Formed in the Open System Corrosion Test of Naphthenic Acids by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Energy & 2019, 33, 4946-4950.	5.1	5
6	Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Characterization of Oil Sand Process-Affected Water in Constructed Wetland Treatment. Energy & Samp; Fuels, 2019, 33, 4420-4431.	5.1	8
7	FT-ICR MS analysis of blended pine-microalgae feedstock HTL biocrudes. Fuel, 2018, 216, 341-348.	6.4	37
8	Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Characterization of Athabasca Oil Sand Process-Affected Waters Incubated in the Presence of Wetland Plants. Energy & Energy	5.1	25
9	Fractionation of Interfacial Material Reveals a Continuum of Acidic Species That Contribute to Stable Emulsion Formation. Energy & Emulsion Formation. Energy & Emulsion Formation. Energy & Emulsion Formation. Energy & Emulsion Formation.	5.1	48
10	Adsorptive fractionation of dissolved organic matter (DOM) by mineral soil: Macroscale approach and molecular insight. Organic Geochemistry, 2017, 103, 113-124.	1.8	102
11	Calculation of the Total Sulfur Content in Crude Oils by Positive-Ion Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Energy	5.1	41
12	Polar Lipid Composition of Biodiesel Algae Candidates Nannochloropsis oculata and Haematococcus pluvialis from Nano Liquid Chromatography Coupled with Negative Electrospray Ionization 14.5 T Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Dies, 2016, 30, 8270-8276.	5.1	18
13	4 Years after the <i>Deepwater Horizon</i> Spill: Molecular Transformation of Macondo Well Oil in Louisiana Salt Marsh Sediments Revealed by FT-ICR Mass Spectrometry. Environmental Science & Emp; Technology, 2016, 50, 9061-9069.	10.0	66
14	Comparison of Atmospheric Pressure Ionization for the Analysis of Heavy Petroleum Fractions with Ion Mobility-Mass Spectrometry. Energy & Samp; Fuels, 2016, 30, 8896-8903.	5.1	56
15	Isomeric Separation and Structural Characterization of Acids in Petroleum by Ion Mobility Mass Spectrometry. Energy & Dies, 2015, 29, 3626-3633.	5.1	50
16	Effect of the Water Content on Silica Gel for the Isolation of Interfacial Material from Athabasca Bitumen. Energy & Ene	5.1	27
17	Novel Method To Isolate Interfacial Material. Energy & Samp; Fuels, 2015, 29, 7058-7064.	5.1	64
18	Chromatographic Enrichment and Subsequent Separation of Nickel and Vanadyl Porphyrins from Natural Seeps and Molecular Characterization by Positive Electrospray Ionization FT-ICR Mass Spectrometry. Analytical Chemistry, 2014, 86, 10708-10715.	6.5	45

#	Article	IF	CITATIONS
19	Direct Analysis of Thin-Layer Chromatography Separations of Petroleum Samples by Laser Desorption Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Imaging. Energy & Energy Fuels, 2014, 28, 6284-6288.	5.1	25
20	Characterization of Fast Pyrolysis Products Generated from Several Western USA Woody Species. Energy &	5.1	30
21	Solid-Phase Extraction Fractionation To Extend the Characterization of Naphthenic Acids in Crude Oil by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Energy & Fuels, 2014, 28, 5043-5048.	5.1	79
22	Structure-drift time relationships in ion mobility mass spectrometry. International Journal for Ion Mobility Spectrometry, 2013, 16, 117-132.	1.4	24
23	Petroleomics by Traveling Wave Ion Mobility–Mass Spectrometry Using CO2 as a Drift Gas. Energy & Fuels, 2013, 27, 7277-7286.	5.1	46
24	Precision in Petroleomics via Ultrahigh Resolution Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Energy & 2013, 27, 7208-7216.	5.1	19
25	Oil Spill Source Identification by Principal Component Analysis of Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectra. Analytical Chemistry, 2013, 85, 9064-9069.	6.5	51
26	Whisky analysis by electrospray ionization-Fourier transform mass spectrometry. Food Research International, 2013, 51, 98-106.	6.2	57
27	Heavy Petroleum Composition. 5. Compositional and Structural Continuum of Petroleum Revealed. Energy & Energy &	5.1	166
28	Baseline resolution of isomers by traveling wave ion mobility mass spectrometry: investigating the eff ects of polarizable drift gases and ionic charge distribution. Journal of Mass Spectrometry, 2013, 48, i-i.	1.6	1
29	Baseline resolution of isomers by traveling wave ion mobility mass spectrometry: investigating the effects of polarizable drift gases and ionic charge distribution. Journal of Mass Spectrometry, 2013, 48, 989-997.	1.6	77
30	Exploring the intrinsic polar [4 + 2 ⁺] cycloaddition reactivity of gaseous carbosulfonium and carboxonium ions. Journal of Mass Spectrometry, 2012, 47, 1526-1535.	1.6	1
31	Baseline correction of absorption-mode Fourier transform ion cyclotron resonance mass spectra. International Journal of Mass Spectrometry, 2012, 325-327, 67-72.	1.5	38
32	Petroleomics by Ultrahigh-Resolution Time-of-Flight Mass Spectrometry. Energy & Ener	5.1	56
33	Comprehensive Chemical Composition of Gas Oil Cuts Using Two-Dimensional Gas Chromatography with Time-of-Flight Mass Spectrometry and Electrospray Ionization Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Samp; Fuels, 2012, 26, 5069-5079.	5.1	31
34	Gasoline, Kerosene, and Diesel Fingerprinting via Polar Markers. Energy & E	5.1	42
35	Charge-tagged N-heterocyclic carbenes. RSC Advances, 2011, 1, 73.	3.6	26
36	Intrinsic Mobility of Gaseous Cationic and Anionic Aggregates of Ionic Liquids. ChemPhysChem, 2011, 12, 1444-1447.	2.1	14

Yuri E Corilo

#	Article	IF	CITATIONS
37	MSn of the six isomers of (GlcN)2(GlcNAc)2 aminoglucan tetrasaccharides (diacetylchitotetraoses): Rules of fragmentation for the sodiated molecules and application to sequence analysis of hetero-chitooligosaccharides. Carbohydrate Polymers, 2011, 84, 713-726.	10.2	18
38	Sesquiterpene lactones from Vernonia scorpioides and their in vitro cytotoxicity. Phytochemistry, 2010, 71, 1539-1544.	2.9	46
39	Search for alkaloids on callus culture of Passiflora alata. Brazilian Archives of Biology and Technology, 2010, 53, 901-910.	0.5	12
40	Petroleomics by EASI(±) FT-ICR MS. Analytical Chemistry, 2010, 82, 3990-3996.	6.5	97
41	Fast Screening and Secure Confirmation of Milk Powder Adulteration with Maltodextrin via Electrospray Ionizationâ Mass Spectrometry [ESI(+)â MS] and Selective Enzymatic Hydrolysis. Journal of Agricultural and Food Chemistry, 2010, 58, 9407-9412.	5.2	19
42	Intrinsic acidity and electrophilicity of gaseous propargyl/allenyl carbocations. Organic and Biomolecular Chemistry, 2010, 8, 2580.	2.8	6
43	A new polyacetylene from Vernonia scorpioides (Lam.) Pers. (Asteraceae) and its in vitro antitumoral activity. Journal of the Brazilian Chemical Society, 2009, 20, 1327-1333.	0.6	18
44	Dimerization of ionized 4â€(methyl mercapto)â€phenol during ESI, APCI and APPI mass spectrometry. Journal of Mass Spectrometry, 2009, 44, 1389-1394.	1.6	9
45	Poly (ethylene terephthalate) thermo-mechanical and thermo-oxidative degradation mechanisms. Polymer Degradation and Stability, 2009, 94, 1849-1859.	5.8	82
46	Recognition and resolution of isomeric alkyl anilines by mass spectrometry. Journal of the American Society for Mass Spectrometry, 2009, 20, 269-277.	2.8	24
47	From Monomers to Geometry-Constrained Molecules: One Step Further Toward Cyanide Bridged Wires. Inorganic Chemistry, 2009, 48, 11226-11235.	4.0	19
48	Recognizing α― β―or γâ€substitution in pyridines by mass spectrometry. Journal of Mass Spectrometry, 2008 43, 1636-1640.	,1.6	10
49	Multiply Charged (Diâ€)Radicals. Angewandte Chemie - International Edition, 2008, 47, 151-154.	13.8	23