Joe E Craft

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3050694/publications.pdf

Version: 2024-02-01

53751 48277 11,100 93 45 88 citations h-index g-index papers 102 102 102 14383 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Development of Tbet- and CD11c-expressing B cells in a viral infection requires T follicular helper cells outside of germinal centers. Immunity, 2022, 55, 290-307.e5.	6.6	53
2	High-affinity, neutralizing antibodies to SARS-CoV-2 can be made without T follicular helper cells. Science Immunology, 2022, 7, .	5 . 6	28
3	Tfh-cell-derived interleukin 21 sustains effector CD8+ TÂcell responses during chronic viral infection. Immunity, 2022, 55, 475-493.e5.	6.6	48
4	Type I Interferon–Activated STAT4 Regulation of Follicular Helper T Cell–Dependent Cytokine and Immunoglobulin Production in Lupus. Arthritis and Rheumatology, 2021, 73, 478-489.	2.9	23
5	T Follicular Regulatory Cells: Choreographers of Productive Germinal Center Responses. Frontiers in Immunology, 2021, 12, 679909.	2,2	18
6	Reply. Arthritis and Rheumatology, 2021, 73, 1344-1345.	2.9	1
7	CD4+ T cells that help B cells – a proposal for uniform nomenclature. Trends in Immunology, 2021, 42, 658-669.	2.9	65
8	CD4+ follicular regulatory T cells optimize the influenza virus–specific B cell response. Journal of Experimental Medicine, 2021, 218, .	4.2	30
9	Neoantigen-driven B cell and CD4ÂT follicular helper cell collaboration promotes anti-tumor CD8 TÂcell responses. Cell, 2021, 184, 6101-6118.e13.	13.5	192
10	Lupus nephritis and beyond: Kidney-intrinsic genetic risk for antibody deposition. Cell Reports Medicine, 2021, 2, 100479.	3.3	0
11	High-affinity, neutralizing antibodies to SARS-CoV-2 can be made without T follicular helper cells Science Immunology, 2021, , eabl5652.	5.6	6
12	Repeat tick exposure elicits distinct immune responses in guinea pigs and mice. Ticks and Tick-borne Diseases, 2020, 11, 101529.	1.1	22
13	Kidney tissue hypoxia dictates T cell–mediated injury in murine lupus nephritis. Science Translational Medicine, 2020, 12, .	5.8	51
14	Identification of a T follicular helper cell subset that drives anaphylactic IgE. Science, 2019, 365, .	6.0	304
15	Spatial and functional heterogeneity of follicular helper T cells in autoimmunity. Current Opinion in Immunology, 2019, 61, 1-9.	2.4	28
16	Distinct modes of mitochondrial metabolism uncouple T cell differentiation and function. Nature, 2019, 571, 403-407.	13.7	156
17	T follicular helper cell heterogeneity: Time, space, and function. Immunological Reviews, 2019, 288, 85-96.	2.8	143
18	Impaired ATM activation in B cells is associated with bone resorption in rheumatoid arthritis. Science Translational Medicine, 2019, 11, .	5.8	15

#	Article	IF	CITATIONS
19	scFTD-seq: freeze-thaw lysis based, portable approach toward highly distributed single-cell 3′ mRNA profiling. Nucleic Acids Research, 2019, 47, e16-e16.	6.5	117
20	STAT4 and T-bet control follicular helper T cell development in viral infections. Journal of Experimental Medicine, 2018, 215, 337-355.	4.2	89
21	Single-cell RNA sequencing unveils an IL-10-producing helper subset that sustains humoral immunity during persistent infection. Nature Communications, 2018, 9, 5037.	5.8	66
22	Human Extrafollicular CD4+ Th Cells Help Memory B Cells Produce Igs. Journal of Immunology, 2018, 201, 1359-1372.	0.4	34
23	Disruption of Pathogenic Cellular Networks by IL-21 Blockade Leads to Disease Amelioration in Murine Lupus. Journal of Immunology, 2017, 198, 2578-2588.	0.4	60
24	Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells. Science, 2017, 356, 1072-1076.	6.0	408
25	Interleukin-10 from CD4 ⁺ follicular regulatory T cells promotes the germinal center response. Science Immunology, 2017, 2, .	5.6	139
26	The TAM family receptor tyrosine kinase TYRO3 is a negative regulator of type 2 immunity. Science, 2016, 352, 99-103.	6.0	67
27	TFH cells progressively differentiate to regulate the germinal center response. Nature Immunology, 2016, 17, 1197-1205.	7.0	301
28	The multifaceted role of CD4+ T cells in CD8+ T cell memory. Nature Reviews Immunology, 2016, 16, 102-111.	10.6	440
29	Reply. Arthritis and Rheumatology, 2015, 67, 3094-3095.	2.9	0
30	A Critical Role of IL-21-Induced BATF in Sustaining CD8-T-Cell-Mediated Chronic Viral Control. Cell Reports, 2015, 13, 1118-1124.	2.9	105
31	Circulating Follicular Helper–Like T Cells in Systemic Lupus Erythematosus: Association With Disease Activity. Arthritis and Rheumatology, 2015, 67, 988-999.	2.9	264
32	PTENtiating autoimmunity through Treg cell deregulation. Nature Immunology, 2015, 16, 139-140.	7.0	12
33	Production of IL-10 by CD4+ regulatory T cells during the resolution of infection promotes the maturation of memory CD8+ T cells. Nature Immunology, 2015, 16, 871-879.	7.0	159
34	Local Triggering of the ICOS Coreceptor by CD11c+ Myeloid Cells Drives Organ Inflammation in Lupus. Immunity, 2015, 42, 552-565.	6.6	46
35	The Interleukin-2-mTORc1 Kinase Axis Defines the Signaling, Differentiation, and Metabolism of T Helper 1 and Follicular B Helper T Cells. Immunity, 2015, 43, 690-702.	6.6	252
36	IL-21 Promotes Pulmonary Fibrosis through the Induction of Profibrotic CD8+ T Cells. Journal of Immunology, 2015, 195, 5251-5260.	0.4	40

#	Article	IF	CITATIONS
37	The transforming growth factor beta signaling pathway is critical for the formation of CD4 T follicular helper cells and isotype-switched antibody responses in the lung mucosa. ELife, 2015, 4, e04851.	2.8	53
38	PPAR \hat{I}^3 Negatively Regulates T Cell Activation to Prevent Follicular Helper T Cells and Germinal Center Formation. PLoS ONE, 2014, 9, e99127.	1.1	41
39	CD4+ T Cell Help Guides Formation of CD103+ Lung-Resident Memory CD8+ T Cells during Influenza Viral Infection. Immunity, 2014, 41, 633-645.	6.6	309
40	Transfer of antigen from human B cells to dendritic cells. Molecular Immunology, 2014, 58, 56-65.	1.0	15
41	Transcription Factor STAT3 and Type I Interferons Are Corepressive Insulators for Differentiation of Follicular Helper and T Helper 1 Cells. Immunity, 2014, 40, 367-377.	6.6	202
42	Dynamic signaling by T follicular helper cells during germinal center B cell selection. Science, 2014, 345, 1058-1062.	6.0	333
43	B Cells in T Follicular Helper Cell Development and Function: Separable Roles in Delivery of ICOS Ligand and Antigen. Journal of Immunology, 2014, 192, 3166-3179.	0.4	54
44	CD301b+ Dermal Dendritic Cells Drive T Helper 2 Cell-Mediated Immunity. Immunity, 2013, 39, 733-743.	6.6	328
45	Roquin Paralogs Add a New Dimension to ICOS Regulation. Immunity, 2013, 38, 624-626.	6.6	2
46	IL-21 Receptor Is Required for the Systemic Accumulation of Activated B and T Lymphocytes in MRL/MpJ-Fas <i>lpr/lpr</i> /j Mice. Journal of Immunology, 2012, 188, 1656-1667.	0.4	78
47	Follicular helper T cells in immunity and systemic autoimmunity. Nature Reviews Rheumatology, 2012, 8, 337-347.	3.5	299
48	The pathogenesis of systemic lupus erythematosusâ€"an update. Current Opinion in Immunology, 2012, 24, 651-657.	2.4	258
49	T cells that promote B ell maturation in systemic autoimmunity. Immunological Reviews, 2012, 247, 160-171.	2.8	70
50	Dissecting the Immune Cell Mayhem That Drives Lupus Pathogenesis. Science Translational Medicine, 2011, 3, 73ps9.	5.8	45
51	Differential Expression of Ly6C and T-bet Distinguish Effector and Memory Th1 CD4+ Cell Properties during Viral Infection. Immunity, 2011, 35, 633-646.	6.6	265
52	An Interleukin-21- Interleukin-10-STAT3 Pathway Is Critical for Functional Maturation of Memory CD8+ T Cells. Immunity, 2011, 35, 792-805.	6.6	331
53	Emerging from the shadows: Follicular helper T cells in autoimmunity. Arthritis and Rheumatism, 2010, 62, 6-8.	6.7	13
54	Epsteinâ∈Barr virus promotes interferonâ€Î± production by plasmacytoid dendritic cells. Arthritis and Rheumatism, 2010, 62, 1693-1701.	6.7	87

#	Article	IF	CITATIONS
55	In Vivo Regulation of Bcl6 and T Follicular Helper Cell Development. Journal of Immunology, 2010, 185, 313-326.	0.4	243
56	Dysregulated balance of Th17 and Th1 cells in systemic lupus erythematosus. Arthritis Research and Therapy, 2010, 12, R53.	1.6	257
57	Competing for help: new insights into the function of follicular helper T cells. Immunology and Cell Biology, 2009, 87, 438-439.	1.0	2
58	Barrier immunity and IL-17. Seminars in Immunology, 2009, 21, 164-171.	2.7	32
59	Bcl6 and Blimp-1 Are Reciprocal and Antagonistic Regulators of T Follicular Helper Cell Differentiation. Science, 2009, 325, 1006-1010.	6.0	1,360
60	ICOS-dependent extrafollicular helper T cells elicit IgG production via IL-21 in systemic autoimmunity. Journal of Experimental Medicine, 2008, 205, 2873-2886.	4.2	358
61	The Role of ICOS in Peripheral Inflammation in Lupus. FASEB Journal, 2008, 22, 668.18.	0.2	0
62	Scavenger receptor type AI mediates antigen transfer from human B cells to other APCs. FASEB Journal, 2008, 22, 1068.14.	0.2	0
63	CD4 T Cells That Promote Extrafollicular B Cell Responses. FASEB Journal, 2008, 22, 846.3.	0.2	0
64	Systemic Lupus Erythematosus: Immunologic Features. , 2006, , 357-367.		3
65	Abrogation of skin disease in LUPUS-prone MRL/FASlprmice by means of a novel tylophorine analog. Arthritis and Rheumatism, 2006, 54, 3277-3283.	6.7	35
66	Defective Control of Latent Epstein-Barr Virus Infection in Systemic Lupus Erythematosus. Journal of Immunology, 2004, 172, 1287-1294.	0.4	217
67	The Centromeric Region of Chromosome 7 from MRL Mice (Lmb3) Is an Epistatic Modifier of Fas for Autoimmune Disease Expression. Journal of Immunology, 2004, 172, 2785-2794.	0.4	24
68	Role of the H-2 haplotype in Fas-intact lupus-prone MRL mice: association with autoantibodies but not renal disease. Arthritis and Rheumatism, 2003, 48, 2992-2995.	6.7	8
69	Intrinsic T Cell Defects in Systemic Autoimmunity. Annals of the New York Academy of Sciences, 2003, 987, 60-67.	1.8	35
70	STAT3 deletion during hematopoiesis causes Crohn's disease-like pathogenesis and lethality: A critical role of STAT3 in innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1879-1884.	3.3	382
71	CD4+ T Cells from Lupus-Prone Mice Avoid Antigen-Specific Tolerance Induction In Vivo. Journal of Immunology, 2003, 170, 741-748.	0.4	38
72	Cd4+ T Cells from Lupus-Prone Mice Are Hyperresponsive to T Cell Receptor Engagement with Low and High Affinity Peptide Antigens. Journal of Experimental Medicine, 2001, 193, 329-338.	4.2	102

#	Article	IF	Citations
73	Deficient brain snRNP70K in patients with Down syndrome. Electrophoresis, 2001, 22, 43-48.	1.3	9
74	From T to B and back again: positive feedback in systemic autoimmune disease. Nature Reviews lmmunology, $2001, 1, 147-153$.	10.6	505
75	γδT cells in autoimmunity. Seminars in Immunopathology, 2000, 22, 311-320.	4.0	11
76	Autoreactive T cells in murine lupus. Immunologic Research, 1999, 19, 245-257.	1.3	28
77	Influence of antigen organization on the development of lupus autoantibodies. Arthritis and Rheumatism, 1998, 41, 603-612.	6.7	22
78	The Regulation of Murine Lupus. Annals of the New York Academy of Sciences, 1997, 815, 128-138.	1.8	17
79	Scleroderma: A disease related to damaged proteins?. Nature Medicine, 1997, 3, 276-278.	15.2	21
80	The transcriptional activator Sp1, a novel autoantigen. Arthritis and Rheumatism, 1997, 40, 1085-1095.	6.7	7
81	Self antigens and epitope spreading in systemic autoimmunity. Arthritis and Rheumatism, 1997, 40, 1374-1382.	6.7	125
82	PCR-RFLP Genotyping of Murine MHC Haplotypes. BioTechniques, 1996, 21, 362-368.	0.8	13
83	Autoantibodies to glycyl–transfer RNA synthetase in myositis. Association with dermatomyositis and immunologic heterogeneity. Arthritis and Rheumatism, 1996, 39, 146-151.	6.7	32
84	Autoimmunity to RNA polymerase II is focused at the carboxyl terminal domain of the large subunit. Arthritis and Rheumatism, 1996, 39, 1886-1891.	6.7	6
85	T cells in murine lupus: propagation and regulation of disease. Molecular Biology Reports, 1996, 23, 247-251.	1.0	36
86	Molecular Structure and Function of Autoantigens in Systemic Sclerosis. International Reviews of Immunology, 1995, 12, 129-144.	1.5	16
87	Immunoglobulin synthesis and generalized autoimmunity in mice congenitally deficient in $\hat{l}\pm\hat{l}^2(+)$ T cells. Nature, 1994, 369, 654-658.	13.7	175
88	Autoantibodies to small nuclear and cytoplasmic ribonucleoproteins in japanese patients with inflammatory muscle disease. Arthritis and Rheumatism, 1992, 35, 449-456.	6.7	127
89	Autoantigenic epitopes of the b polypeptide of SM small nuclear RNP particles. Arthritis and Rheumatism, 1992, 35, 960-966.	6.7	15
90	PBC 95K, a 95-kilodalton nuclear autoantigen in primary biliary cirrhosis. Arthritis and Rheumatism, 1991, 34, 731-736.	6.7	38

#	Article	IF	CITATIONS
91	The analysis of antinuclear and antinucleolar autoantibodies of scleroderma by radioimmunoprecipitation assays. Arthritis and Rheumatism, 1990, 33, 1431-1437.	6.7	90
92	Autoantigenic histone epitopes: a comparison between procainamide- and hydralazine-induced lupus. Arthritis and Rheumatism, 1987, 30, 689-694.	6.7	44
93	Ocular Clinical Findings and Basement Membrane Changes in Goodpasture's Syndrome. American Journal of Ophthalmology, 1975, 79, 452-463.	1.7	87