Edinson Yara-VarÃ³n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3049742/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Is it possible to substitute hexane with green solvents for extraction of carotenoids? A theoretical versus experimental solubility study. RSC Advances, 2016, 6, 27750-27759.	3.6	132
2	Vegetable Oils as Alternative Solvents for Green Oleo-Extraction, Purification and Formulation of Food and Natural Products. Molecules, 2017, 22, 1474.	3.8	114
3	Limonene as an agro-chemical building block for the synthesis and extraction of bioactive compounds. Comptes Rendus Chimie, 2017, 20, 346-358.	0.5	78
4	Solvent from forestry biomass. Pinane a stable terpene derived from pine tree byproducts to substitute n-hexane for the extraction of bioactive compounds. Green Chemistry, 2016, 18, 6596-6608.	9.0	42
5	Cadmium exposure during pregnancy and lactation: materno-fetal and newborn repercussions of Cd(<scp>ii</scp>), and Cd–metallothionein complexes. Metallomics, 2018, 10, 1359-1367.	2.4	39
6	Lipase activity and enantioselectivity of whole cells from a wild-type Aspergillius flavus strain. Journal of Molecular Catalysis B: Enzymatic, 2014, 100, 78-83.	1.8	14
7	Solvent-free biocatalytic interesterification of acrylate derivatives. Catalysis Today, 2012, 196, 86-90.	4.4	11
8	Synthesis of poly(ethyl acrylate-co-allyl acrylates) from acrylate mixtures prepared by a continuous solvent-free enzymatic process. RSC Advances, 2012, 2, 9230.	3.6	11
9	Sustainable Synthesis of Omega-3 Fatty Acid Ethyl Esters from Monkfish Liver Oil. Catalysts, 2021, 11, 100.	3.5	11
10	Use of biobased crude glycerol, obtained biocatalytically, to obtain biofuel additives by catalytic acetalization of furfural using SAPO catalysts. Fuel, 2022, 319, 123803.	6.4	10
11	Ionic compounds derived from crude glycerol: Thermal energy storage capability evaluation. Renewable Energy, 2017, 114, 629-637.	8.9	9
12	Biocatalytic preparation of dichloropropyl acrylates. Application to the synthesis of poly(dichloropropyl acrylates). Journal of Molecular Catalysis B: Enzymatic, 2013, 92, 7-13.	1.8	6
13	Recycling Rhizopus oryzae resting cells as biocatalyst to prepare near eutectic palmitic-stearic acid mixtures from non-edible fat. Journal of Molecular Catalysis B: Enzymatic, 2016, 134, 172-177.	1.8	6
14	Entrapment in polymeric material of resting cells of Aspergillus flavus with lipase activity. Application to the synthesis of ethyl laurate. RSC Advances, 2014, 4, 38418-38424.	3.6	3
15	Entirely solvent-free biocatalytic synthesis of solketal fatty esters from soybean seeds. Comptes Rendus Chimie, 2016, 19, 749-753.	0.5	3
16	Nuclear Magnetic Resonance Spectroscopy: An Alternative Fast Tool for Quantitative Analysis of the Solvent-free Ethanolysis of Coconut Oil Using Fungal Resting Cells. New Biotechnology, 2014, 31, S89.	4.4	1