
Yuliya Vystavna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3049455/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pharmaceutical pollution of the world's rivers. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	495
2	Removal efficiency of pharmaceuticals in a full scale constructed wetland in East Ukraine. Ecological Engineering, 2017, 108, 50-58.	3.6	82
3	Pharmaceuticals in Rivers of Two Regions with Contrasted Socio-Economic Conditions: Occurrence, Accumulation, and Comparison for Ukraine and France. Water, Air, and Soil Pollution, 2012, 223, 2111-2124.	2.4	75
4	Groundwater dependent ecosystems in coastal Mediterranean regions: Characterization, challenges and management for their protection. Water Research, 2020, 172, 115461.	11.3	75
5	Trace metals in wine and vineyard environment in southern Ukraine. Food Chemistry, 2014, 146, 339-344.	8.2	44
6	Monitoring of trace metals and pharmaceuticals as anthropogenic and socio-economic indicators of urban and industrial impact on surface waters. Environmental Monitoring and Assessment, 2013, 185, 3581-3601.	2.7	41
7	Priority substances and emerging pollutants in urban rivers in Ukraine: Occurrence, fluxes and loading to transboundary European Union watersheds. Science of the Total Environment, 2018, 637-638, 1358-1362.	8.0	41
8	Stable isotopes in global lakes integrate catchment and climatic controls on evaporation. Nature Communications, 2021, 12, 7224.	12.8	35
9	Nitrate contamination in a shallow urban aquifer in East Ukraine: evidence from hydrochemical, stable isotopes of nitrate and land use analysis. Environmental Earth Sciences, 2017, 76, 1.	2.7	33
10	Distribution of trace elements in waters and sediments of the Seversky Donets transboundary watershed (Kharkiv region, Eastern Ukraine). Applied Geochemistry, 2012, 27, 2077-2087.	3.0	32
11	Assessment of treatment efficiency of constructed wetlands in East Ukraine. Ecological Engineering, 2015, 83, 159-168.	3.6	32
12	Multi-tracing of recharge seasonality and contamination in groundwater: A tool for urban water resource management. Water Research, 2019, 161, 413-422.	11.3	31
13	Trace element transfer from soil to leaves of macrophytes along the Jalle d'Eysines River, France and their potential use as contamination biomonitors. Ecological Indicators, 2014, 46, 425-437.	6.3	28
14	Temperature and precipitation effects on the isotopic composition of global precipitation reveal long-term climate dynamics. Scientific Reports, 2021, 11, 18503.	3.3	25
15	Long-term trends of phosphorus concentrations in an artificial lake: Socio-economic and climate drivers. PLoS ONE, 2017, 12, e0186917.	2.5	25
16	A European map of groundwater pH and calcium. Earth System Science Data, 2021, 13, 1089-1105.	9.9	24
17	Monitoring and flux determination of trace metals in rivers of the Seversky Donets basin (Ukraine) using DGT passive samplers. Environmental Earth Sciences, 2012, 65, 1715-1725.	2.7	22
18	Determination of dominant sources of nitrate contamination in transboundary (Russian) Tj ETQq0 0 0 rgBT /Over	rlock 10 Tf 2.7	50 67 Td (Fe

18 Assessment, 2017, 189, 509.

Yuliya Vystavna

#	Article	IF	CITATIONS
19	Nitrates in springs and rivers of East Ukraine: Distribution, contamination and fluxes. Applied Geochemistry, 2015, 53, 71-78.	3.0	21
20	Comparison of soil-to-root transfer and translocation coefficients of trace elements in vines of Chardonnay and Muscat white grown in the same vineyard. Scientia Horticulturae, 2015, 192, 89-96.	3.6	20
21	Small-scale chemical and isotopic variability of hydrological pathways in a mountain lake catchment. Journal of Hydrology, 2020, 585, 124834.	5.4	19
22	Coupling isotope hydrology, geochemical tracers and emerging compounds to evaluate mixing processes and groundwater dependence of a highly anthropized coastal hydrosystem. Journal of Hydrology, 2019, 578, 123979.	5.4	18
23	Microbial responses to selected pharmaceuticals in agricultural soils: Microcosm study on the roles of soil, treatment and time. Soil Biology and Biochemistry, 2020, 149, 107924.	8.8	18
24	Hydrochemical characteristics and water quality assessment of surface and ground waters in the transboundary (Russia/Ukraine) Seversky Donets basin. Environmental Earth Sciences, 2015, 74, 585-596.	2.7	17
25	Water laws of Georgia, Moldova and Ukraine: current problems and integration with EU legislation. Water International, 2018, 43, 424-435.	1.0	17
26	Defining a stable water isotope framework for isotope hydrology application in a large trans-boundary watershed (Russian Federation/Ukraine). Isotopes in Environmental and Health Studies, 2018, 54, 147-167.	1.0	17
27	Quantification of water and sewage leakages from urban infrastructure into a shallow aquifer in East Ukraine. Environmental Earth Sciences, 2018, 77, 1.	2.7	17
28	60-year trends of δ180 in global precipitation reveal large scale hydroclimatic variations. Global and Planetary Change, 2020, 195, 103335.	3.5	17
29	Isotopic response of runâ€off to forest disturbance in small mountain catchments. Hydrological Processes, 2018, 32, 3650-3661.	2.6	14
30	Trace metals transfer during vine cultivation and winemaking processes. Journal of the Science of Food and Agriculture, 2017, 97, 4520-4525.	3.5	12
31	Speciesâ€dependent effect of cover cropping on trace elements and nutrients in vineyard soil and <i>Vitis</i> . Journal of the Science of Food and Agriculture, 2020, 100, 885-890.	3.5	9
32	Long-term meteorological data and isotopic composition in precipitation, surface water and groundwater revealed hydrologic sensitivity to climate change in East Ukraine. Isotopes in Environmental and Health Studies, 2020, 56, 136-148.	1.0	8
33	Evaporation in Mediterranean conditions: Estimations based on isotopic approaches at the watershed scale. Hydrological Processes, 2021, 35, e14085.	2.6	8
34	Relationships between a catchment-scale forest disturbance index, time delays, and chemical properties of surface water. Ecological Indicators, 2021, 125, 107558.	6.3	7
35	Effect of snowmelt on the dynamics, isotopic and chemical composition of runoff in mature and regenerated forested catchments. Journal of Hydrology, 2021, 598, 126437.	5.4	7
36	The history of viticultural land use as a determinant of contemporary regional development in Western Poland. Land Use Policy, 2019, 85, 249-258.	5.6	6

Yuliya Vystavna

#	Article	IF	CITATIONS
37	Nitrate sources and mixing in the Danube watershed: implications for transboundary river basin monitoring and management. Scientific Reports, 2022, 12, 2150.	3.3	6
38	Forest damage and subsequent recovery alter the water composition in mountain lake catchments. Science of the Total Environment, 2022, 827, 154293.	8.0	6
39	Quantification of nitrate fluxes to groundwater and rivers from different land use types. Hungarian Geographical Bulletin, 2018, 67, 333-341.	0.9	3
40	Phosphorus dynamics during early soil development in a cold desert: insights from oxygen isotopes in phosphate. Soil, 2022, 8, 1-15.	4.9	3
41	Water scarcity and contamination in eastern Ukraine. Proceedings of the International Association of Hydrological Sciences, 0, 366, 149-150.	1.0	1
42	Fluctuations of Annual Precipitation and Water Resources Quality in Ukraine. Chemistry and Chemical Technology, 2016, 10, 621-629.	1.1	1
43	Stable isotope composition of precipitation events revealed modern climate variability. Theoretical and Applied Climatology, 2022, 147, 1649-1661.	2.8	1