
Alexander D Huryn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3049053/publications.pdf Version: 2024-02-01

ALEYANDER D HURVN

#	Article	IF	CITATIONS
1	Nutrient enrichment intensifies the effects of warming on metabolic balance of stream ecosystems. Limnology and Oceanography Letters, 2022, 7, 332-341.	3.9	8
2	Flow is more Important than Temperature in Driving Patterns of Organic Matter Storage and Stoichiometry in Stream Ecosystems. Ecosystems, 2021, 24, 1317-1331.	3.4	4
3	<scp><i>Aufeis</i></scp> fields as novel groundwaterâ€dependent ecosystems in the arctic cryosphere. Limnology and Oceanography, 2021, 66, 607-624.	3.1	12
4	Thermal niche diversity and trophic redundancy drive neutral effects of warming on energy flux through a stream food web. Ecology, 2020, 101, e02952.	3.2	7
5	<scp>R</scp> esource supply governs the apparent temperature dependence of animal production in stream ecosystems. Ecology Letters, 2020, 23, 1809-1819.	6.4	12
6	Seasonal Subsurface Thaw Dynamics of an Aufeis Feature Inferred From Geophysical Methods. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2019JF005345.	2.8	15
7	Disturbance, nutrients, and antecedent flow conditions affect macroinvertebrate community structure and productivity in an Arctic river. Limnology and Oceanography, 2019, 64, S93.	3.1	17
8	Seasonal changes in light availability modify the temperature dependence of secondary production in an Arctic stream. Ecology, 2019, 100, e02690.	3.2	13
9	Increased resource use efficiency amplifies positive response of aquatic primary production to experimental warming. Global Change Biology, 2018, 24, 1069-1084.	9.5	38
10	Shifts in community size structure drive temperature invariance of secondary production in a streamâ€warming experiment. Ecology, 2017, 98, 1797-1806.	3.2	23
11	Secondary Production and Quantitative Food Webs. , 2017, , 235-254.		43
12	Experimental wholeâ€stream warming alters community size structure. Global Change Biology, 2017, 23, 2618-2628.	9.5	37
13	Warming alters coupled carbon and nutrient cycles in experimental streams. Global Change Biology, 2016, 22, 2152-2164.	9.5	43
14	Discharge, legacy effects and nutrient availability as determinants of temporal patterns in biofilm metabolism and accrual in an arctic river. Freshwater Biology, 2015, 60, 2323-2336.	2.4	20
15	Does N ₂ fixation amplify the temperature dependence of ecosystem metabolism?. Ecology, 2015, 96, 603-610.	3.2	53
16	Interactions between temperature and nutrients across levels of ecological organization. Global Change Biology, 2015, 21, 1025-1040.	9.5	210
17	The Plecoptera and Trichoptera of the Arctic North Slope of Alaska. Western North American Naturalist, 2014, 74, 275-285.	0.4	6
18	Seasonal changes in light availability modify the temperature dependence of ecosystem metabolism in an arctic stream. Ecology, 2014, 95, 2826-2839.	3.2	47

Alexander D Huryn

#	Article	IF	CITATIONS
19	Disturbance and productivity as codeterminants of stream food web complexity in the Arctic. Limnology and Oceanography, 2013, 58, 2158-2170.	3.1	19
20	Effects of natural disturbance on stream communities: a habitat template analysis of arctic headwater streams. Freshwater Biology, 2011, 56, 1342-1357.	2.4	23
21	Extreme seasonality of litter breakdown in an arctic spring-fed stream is driven by shredder phenology, not temperature. Freshwater Biology, 2011, 56, 2034-2044.	2.4	21
22	Stream ecosystem response to chronic deposition of N and acid at the Bear Brook Watershed, Maine. Environmental Monitoring and Assessment, 2010, 171, 83-92.	2.7	14
23	Benthic invertebrate production—facilitating answers to ecological riddles in freshwater ecosystems. Journal of the North American Benthological Society, 2010, 29, 264-285.	3.1	103
24	Macroinvertebrates as indicators of fish absence in naturally fishless lakes. Freshwater Biology, 2009, 54, 181-202.	2.4	65
25	Effects of introduced fish on macroinvertebrate communities in historically fishless headwater and kettle lakes. Biological Conservation, 2009, 142, 3030-3038.	4.1	42
26	Predicting the locations of naturally fishless lakes. Freshwater Biology, 2008, 53, 1021-1035.	2.4	24
27	Relationship between biomass turnover and body size for stream communities. , 2007, , 55-76.		27
28	Food web structure and function in two arctic streams with contrasting disturbance regimes. Freshwater Biology, 2006, 51, 1249-1263.	2.4	50
29	Response of stream macroinvertebrate production to atmospheric nitrogen deposition and channel drying. Limnology and Oceanography, 2005, 50, 228-236.	3.1	31
30	Effects of atmospheric N deposition on coarse organic matter in a headwater stream. Hydrobiologia, 2005, 532, 167-179.	2.0	4
31	Landscape heterogeneity and the biodiversity of Arctic stream communities: a habitat template analysis. Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62, 1905-1919.	1.4	48
32	Effect of a whole-catchment N addition on stream detritus processing. Journal of the North American Benthological Society, 2003, 22, 194-206.	3.1	45
33	Life History and Production of Stream Insects. Annual Review of Entomology, 2000, 45, 83-110.	11.8	257
34	EFFECTS OF LAND USE ON STREAM METABOLISM AND ORGANIC MATTER TURNOVER. , 1999, 9, 1359-1376.		194
35	Length-Mass Relationships for Freshwater Macroinvertebrates in North America with Particular Reference to the Southeastern United States. Journal of the North American Benthological Society, 1999, 18, 308-343.	3.1	879
36	Effects of Land Use on Stream Metabolism and Organic Matter Turnover. , 1999, 9, 1359.		5

3

Alexander D Huryn

#	Article	IF	CITATIONS
37	Ecosystem-level evidence for top-down and bottom-up control of production in a grassland stream system. Oecologia, 1998, 115, 173-183.	2.0	130
38	Comment: Improvements to the diurnal upstream-downstream dissolved oxygen change technique for determining whole-stream metabolism in small streams. Canadian Journal of Fisheries and Aquatic Sciences, 1998, 55, 1784-1785.	1.4	110
39	Longitudinal patterns of organic matter transport and turnover along a New Zealand grassland river. Freshwater Biology, 1997, 38, 93-107.	2.4	30
40	An appraisal of the Allen paradox in a New Zealand trout stream. Limnology and Oceanography, 1996, 41, 243-252.	3.1	127
41	Annual contribution of terrestrial invertebrates to a New Zealand trout stream. New Zealand Journal of Marine and Freshwater Research, 1995, 29, 467-477.	2.0	51
42	Effects of agricultural development on processing of tussock leaf litter in high country New Zealand streams. Freshwater Biology, 1994, 32, 413-427.	2.4	54