
Matthew R Ryder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3048386/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Light-induced switchable adsorption in azobenzene- and stilbene-based porous materials. Trends in Chemistry, 2022, 4, 32-47.	4.4	11
2	Influence of Metal Identity on Light-Induced Switchable Adsorption in Azobenzene-Based Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2022, 14, 11192-11199.	4.0	14
3	Cyclophane-based two-dimensional polymer formed by an interfacial click reaction. Cell Reports Physical Science, 2022, 3, 100806.	2.8	3
4	Structure Evolution of Chemically Degraded ZIF-8. Journal of Physical Chemistry C, 2022, 126, 9736-9741.	1.5	7
5	Trends in the thermal stability of two-dimensional covalent organic frameworks. Faraday Discussions, 2021, 225, 226-240.	1.6	41
6	Towards complex systems and devices: general discussion. Faraday Discussions, 2021, 225, 431-441.	1.6	0
7	Thermal decarboxylation for the generation of hierarchical porosity in isostructural metal–organic frameworks containing open metal sites. Materials Advances, 2021, 2, 5487-5493.	2.6	14
8	Advanced characterisation techniques: multi-scale, <i>in situ</i> , and time-resolved: general discussion. Faraday Discussions, 2021, 225, 152-167.	1.6	2
9	Order-disorder in room-temperature ionic liquids probed via methyl quantum tunneling. Structural Dynamics, 2021, 8, 024303.	0.9	3
10	Controlled Metal Oxide and Porous Carbon Templation Using Metal-Organic Frameworks. Crystal Growth and Design, 2021, 21, 4249-4258.	1.4	3
11	Detailed total scattering analysis of disorder in ZIF-8. Journal of Applied Crystallography, 2021, 54, 759-767.	1.9	3
12	Low rotational barriers for the most dynamically active methyl groups in the proposed antiviral drugs for treatment of SARS-CoV-2, apilimod and tetrandrine. Chemical Physics Letters, 2021, 777, 138727.	1.2	9
13	Evolution of porous materials from ancient remedies to modern frameworks. Communications Chemistry, 2021, 4, .	2.0	24
14	Novel computational tools: general discussion. Faraday Discussions, 2021, 225, 341-357.	1.6	1
15	Hydrogen-Bonded Organic Frameworks: A Rising Class of Porous Molecular Materials. Accounts of Materials Research, 2020, 1, 77-87.	5.9	206
16	Destruction of Metal–Organic Frameworks: Positive and Negative Aspects of Stability and Lability. Chemical Reviews, 2020, 120, 13087-13133.	23.0	294
17	Challenges for large scale simulation: general discussion. Faraday Discussions, 2020, 224, 309-332.	1.6	2
18	New density-functional approximations and beyond: general discussion. Faraday Discussions, 2020, 224, 166-200.	1.6	1

MATTHEW R RYDER

#	Article	IF	CITATIONS
19	New approaches to study excited states in density functional theory: general discussion. Faraday Discussions, 2020, 224, 483-508.	1.6	2
20	Effect of Hydration on the Molecular Dynamics of Hydroxychloroquine Sulfate. ACS Omega, 2020, 5, 21231-21240.	1.6	8
21	Highâ€Sensitivity Acoustic Molecular Sensors Based on Largeâ€Area, Sprayâ€Coated 2D Covalent Organic Frameworks. Advanced Materials, 2020, 32, e2004205.	11.1	67
22	Hydration-Induced Disorder Lowers the Energy Barriers for Methyl Rotation in Drug Molecules. Journal of Physical Chemistry Letters, 2020, 11, 10256-10261.	2.1	7
23	Metal oxide decorated porous carbons from controlled calcination of a metal–organic framework. Nanoscale Advances, 2020, 2, 2758-2767.	2.2	10
24	Single-Crystal Polycationic Polymers Obtained by Single-Crystal-to-Single-Crystal Photopolymerization. Journal of the American Chemical Society, 2020, 142, 6180-6187.	6.6	50
25	Understanding dynamic properties of materials using neutron spectroscopy and atomistic simulation. Journal of Physics Communications, 2020, 4, 072001.	0.5	21
26	Computers in neutron science. Journal of Physics Communications, 2020, 4, 110401.	0.5	1
27	A Hierarchical Nanoporous Diamondoid Superstructure. CheM, 2019, 5, 2353-2364.	5.8	23
28	Assembly of a Porous Supramolecular Polyknot from Rigid Trigonal Prismatic Building Blocks. Journal of the American Chemical Society, 2019, 141, 12998-13002.	6.6	36
29	Buckling of Two-Dimensional Covalent Organic Frameworks under Thermal Stress. Industrial & Engineering Chemistry Research, 2019, 58, 9883-9887.	1.8	30
30	Quasiâ€Harmonic Lattice Dynamics of a Prototypical Metal–Organic Framework. Advanced Theory and Simulations, 2019, 2, 1900093.	1.3	21
31	Impact of Pressure and Temperature on the Broadband Dielectric Response of the HKUST-1 Metal–Organic Framework. Journal of Physical Chemistry C, 2019, 123, 29427-29435.	1.5	14
32	Pressure-driven mechanical anisotropy and destabilization in zeolitic imidazolate frameworks. Physical Review B, 2019, 99, .	1.1	27
33	Recovering waste plastics using shape-selective nano-scale reactors as catalysts. Nature Sustainability, 2019, 2, 39-42.	11.5	53
34	Interpenetration Isomerism in Triptyceneâ€Based Hydrogenâ€Bonded Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 1664-1669.	7.2	93
35	Interpenetration Isomerism in Triptyceneâ€Based Hydrogenâ€Bonded Organic Frameworks. Angewandte Chemie, 2019, 131, 1678-1683.	1.6	29
36	Understanding and Controlling the Dielectric Response of Metal–Organic Frameworks. ChemPlusChem, 2018, 83, 308-316.	1.3	36

MATTHEW R RYDER

#	Article	IF	CITATIONS
37	Dielectric Properties of Zeolitic Imidazolate Frameworks in the Broad-Band Infrared Regime. Journal of Physical Chemistry Letters, 2018, 9, 2678-2684.	2.1	31
38	Applications of crystal structure prediction – inorganic and network structures: general discussion. Faraday Discussions, 2018, 211, 613-642.	1.6	6
39	Crystal structure evaluation: calculating relative stabilities and other criteria: general discussion. Faraday Discussions, 2018, 211, 325-381.	1.6	7
40	Tracking thermal-induced amorphization of a zeolitic imidazolate framework via synchrotron in situ far-infrared spectroscopy. Chemical Communications, 2017, 53, 7041-7044.	2.2	30
41	Probing Dielectric Properties of Metal–Organic Frameworks: MIL-53(Al) as a Model System for Theoretical Predictions and Experimental Measurements via Synchrotron Far- and Mid-Infrared Spectroscopy. Journal of Physical Chemistry Letters, 2017, 8, 5035-5040.	2.1	39
42	Catalysis in MOFs: general discussion. Faraday Discussions, 2017, 201, 369-394.	1.6	14
43	Large elastic recovery of zinc dicyanoaurate. APL Materials, 2017, 5, 066107.	2.2	4
44	Electrophilicity of oxalic acid monomer is enhanced in the dimer by intermolecular proton transfer. Physical Chemistry Chemical Physics, 2017, 19, 29760-29766.	1.3	3
45	Detecting Molecular Rotational Dynamics Complementing the Low-Frequency Terahertz Vibrations in a Zirconium-Based Metal-Organic Framework. Physical Review Letters, 2017, 118, 255502.	2.9	60
46	Photonic hybrid crystals constructed from in situ host–guest nanoconfinement of a light-emitting complex in metal–organic framework pores. Nanoscale, 2016, 8, 6851-6859.	2.8	36
47	Discovering connections between terahertz vibrations and elasticity underpinning the collective dynamics of the HKUST-1 metal–organic framework. CrystEngComm, 2016, 18, 4303-4312.	1.3	96
48	Isoreticular zirconium-based metal–organic frameworks: discovering mechanical trends and elastic anomalies controlling chemical structure stability. Physical Chemistry Chemical Physics, 2016, 18, 9079-9087.	1.3	46
49	Explaining the mechanical mechanisms of zeolitic metal–organic frameworks: revealing auxeticity and anomalous elasticity. Dalton Transactions, 2016, 45, 4154-4161.	1.6	59
50	Micromechanical Behavior of Polycrystalline Metal–Organic Framework Thin Films Synthesized by Electrochemical Reaction. Crystal Growth and Design, 2015, 15, 1991-1999.	1.4	26
51	Identifying the Role of Terahertz Vibrations in Metal-Organic Frameworks: From Gate-Opening Phenomenon to Shear-Driven Structural Destabilization. Physical Review Letters, 2014, 113, 215502.	2.9	202
52	Communication: Remarkable electrophilicity of the oxalic acid monomer: An anion photoelectron spectroscopy and theoretical study. Journal of Chemical Physics, 2014, 140, 221103.	1.2	12
53	Intermolecular Interactions between Molecules in Various Conformational States: The Dimer of Oxalic Acid. Journal of Physical Chemistry A, 2014, 118, 7385-7391.	1.1	11
54	Nanoporous metal organic framework materials for smart applications. Materials Science and Technology, 2014, 30, 1598-1612.	0.8	87