

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3048309/publications.pdf

Version: 2024-02-01

νανιμ

#	Article	IF	CITATIONS
1	Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nature Materials, 2014, 13, 36-41.	27.5	670
2	Biocompatible polydopamine fluorescent organic nanoparticles: facile preparation and cell imaging. Nanoscale, 2012, 4, 5581.	5.6	476
3	Making and Remaking Dynamic 3D Structures by Shining Light on Flat Liquid Crystalline Vitrimer Films without a Mold. Journal of the American Chemical Society, 2016, 138, 2118-2121.	13.7	334
4	Carbon nanotube–vitrimer composite for facile and efficient photo-welding of epoxy. Chemical Science, 2014, 5, 3486-3492.	7.4	258
5	A durable monolithic polymer foam for efficient solar steam generation. Chemical Science, 2018, 9, 623-628.	7.4	235
6	Regional Shape Control of Strategically Assembled Multishape Memory Vitrimers. Advanced Materials, 2016, 28, 156-160.	21.0	213
7	Multi-stimuli responsive and multi-functional oligoaniline-modified vitrimers. Chemical Science, 2017, 8, 724-733.	7.4	178
8	Functional epoxy vitrimers and composites. Progress in Materials Science, 2021, 120, 100710.	32.8	178
9	Carbon-dots derived from nanodiamond: Photoluminescence tunable nanoparticles for cell imaging. Journal of Colloid and Interface Science, 2013, 397, 39-44.	9.4	171
10	Cellular responses of aniline oligomers: a preliminary study. Toxicology Research, 2012, 1, 201.	2.1	166
11	Dispersion and Alignment of Carbon Nanotubes in Liquid Crystalline Polymers and Elastomers. Advanced Materials, 2010, 22, 3436-3440.	21.0	162
12	PEGylation and polyPEGylation of nanodiamond. Polymer, 2012, 53, 3178-3184.	3.8	141
13	Detecting topology freezing transition temperature of vitrimers by AIE luminogens. Nature Communications, 2019, 10, 3165.	12.8	136
14	Untethered Recyclable Tubular Actuators with Versatile Locomotion for Soft Continuum Robots. Advanced Materials, 2018, 30, e1801103.	21.0	133
15	Polydopamine coated shape memory polymer: enabling light triggered shape recovery, light controlled shape reprogramming and surface functionalization. Chemical Science, 2016, 7, 4741-4747.	7.4	128
16	Photo-oxidative enhancement of polymeric molecular sieve membranes. Nature Communications, 2013, 4, 1918.	12.8	117
17	Solvent-assisted programming of flat polymer sheets into reconfigurable and self-healing 3D structures. Nature Communications, 2018, 9, 1906.	12.8	108
18	Seamless multimaterial 3D liquid-crystalline elastomer actuators for next-generation entirely soft robots. Science Advances, 2020, 6, eaay8606.	10.3	108

Yan Ji

#	Article	IF	CITATIONS
19	PolyPEGylated nanodiamond for intracellular delivery of a chemotherapeutic drug. Polymer Chemistry, 2012, 3, 2716.	3.9	105
20	Carbon-nanotube sensitized nematic elastomer composites for IR-visible photo-actuation. Soft Matter, 2012, 8, 1570-1574.	2.7	104
21	Liquidâ€Crystalline Soft Actuators with Switchable Thermal Reprogrammability. Angewandte Chemie - International Edition, 2020, 59, 4778-4784.	13.8	102
22	Polydopamine nanoparticles doped in liquid crystal elastomers for producing dynamic 3D structures. Journal of Materials Chemistry A, 2017, 5, 6740-6746.	10.3	98
23	Reprocessable Thermoset Soft Actuators. Angewandte Chemie - International Edition, 2019, 58, 17474-17479.	13.8	90
24	Fluorescence and Aggregation Behavior of Poly(amidoamine) Dendrimers Peripherally Modified with Aromatic Chromophores:Â the Effect of Dendritic Architectures. Journal of the American Chemical Society, 2004, 126, 15180-15194.	13.7	89
25	Durable liquid-crystalline vitrimer actuators. Chemical Science, 2019, 10, 3025-3030.	7.4	82
26	Size tunable fluorescent nano-graphite oxides: preparation and cell imaging applications. Physical Chemistry Chemical Physics, 2013, 15, 19013.	2.8	80
27	Combining mussel-inspired chemistry and the Michael addition reaction to disperse carbon nanotubes. RSC Advances, 2012, 2, 12153.	3.6	79
28	A Dendron Based on Natural Amino Acids: Synthesis and Behavior as an Organogelator and Lyotropic Liquid Crystal. Angewandte Chemie - International Edition, 2005, 44, 6025-6029.	13.8	77
29	Single-mode laser tuning from cholesteric elastomers using a "notch―band-gap configuration. Optics Express, 2010, 18, 575.	3.4	72
30	Nanoparticle-Liquid Crystalline Elastomer Composites. Polymers, 2012, 4, 316-340.	4.5	66
31	Electricity-Triggered Self-Healing of Conductive and Thermostable Vitrimer Enabled by Paving Aligned Carbon Nanotubes. ACS Applied Materials & Interfaces, 2020, 12, 14315-14322.	8.0	60
32	Photoreversible dendritic organogel. Chemical Communications, 2007, , 4233.	4.1	58
33	Locally controllable magnetic soft actuators with reprogrammable contraction-derived motions. Science Advances, 2022, 8, .	10.3	57
34	Dissolving and Aligning Carbon Nanotubes in Thermotropic Liquid Crystals. Langmuir, 2011, 27, 13254-13260.	3.5	55
35	Organogels and Liquid Crystalline Properties of Amino Acid-Based Dendrons: A Systematic Study on Structure–Property Relationship. Chemistry of Materials, 2012, 24, 71-80.	6.7	55
36	Self-Assembly of Amino-Acid-Based Dendrons: Organogels and Lyotropic and Thermotropic Liquid Crystals. Chemistry of Materials, 2008, 20, 4173-4175.	6.7	54

Yan Ji

#	Article	IF	CITATIONS
37	Biocompatibility evaluation of aniline oligomers with different end-functional groups. Toxicology Research, 2013, 2, 427.	2.1	52
38	Polysiloxane Surfactants for the Dispersion of Carbon Nanotubes in Nonpolar Organic Solvents. Langmuir, 2009, 25, 12325-12331.	3.5	49
39	Effect of crosslinking on the photonic bandgap in deformable cholesteric elastomers. Optics Express, 2008, 16, 5320.	3.4	41
40	Enabling the sunlight driven response of thermally induced shape memory polymers by rewritable CH ₃ NH ₃ PbI ₃ perovskite coating. Journal of Materials Chemistry A, 2017, 5, 7285-7290.	10.3	39
41	Polymer actuators based on covalent adaptable networks. Polymer Chemistry, 2020, 11, 5297-5320.	3.9	39
42	Vitrimer-based soft actuators with multiple responsiveness and self-healing ability triggered by multiple stimuli. Matter, 2021, 4, 3354-3365.	10.0	38
43	Vitrification and plastic flow in transient elastomer networks. Polymer, 2016, 95, 45-51.	3.8	37
44	Photoresponsive organogels: an amino acid-based dendron functionalized with p-nitrocinnamate. Tetrahedron, 2009, 65, 3496-3501.	1.9	36
45	Photo-responsive liquid crystalline vitrimer containing oligoanilines. Chinese Chemical Letters, 2017, 28, 2139-2142.	9.0	34
46	Supramolecular Self-Assembly of Dimeric Dendrons with Different Aliphatic Spacers. Chemistry of Materials, 2009, 21, 456-462.	6.7	33
47	Preparation of Monodisperse Platinum Nanocrystal Coreâ^'Poly(amidoamine) (PAMAM) Dendrimer Shell Structures as Monolayer Films. Journal of Physical Chemistry B, 2004, 108, 1176-1178.	2.6	30
48	Harnessing the Day–Night Rhythm of Humidity and Sunlight into Mechanical Work Using Recyclable and Reprogrammable Soft Actuators. ACS Applied Materials & Interfaces, 2019, 11, 29290-29297.	8.0	28
49	Glycine and l-glutamic acid-based dendritic gelators. Tetrahedron, 2007, 63, 8794-8800.	1.9	24
50	Self-healing anti-corrosion coatings based on polymers of intrinsic microporosity for the protection of aluminum alloy. RSC Advances, 2015, 5, 104451-104457.	3.6	24
51	Gold Nanospheres Dispersed Light Responsive Epoxy Vitrimers. Polymers, 2018, 10, 65.	4.5	24
52	Reprocessable Thermoset Soft Actuators. Angewandte Chemie, 2019, 131, 17635-17640.	2.0	23
53	A novel aluminum-carbon nanotubes nanocomposite with doubled strength and preserved electrical conductivity. Nano Research, 2021, 14, 2776-2782.	10.4	21
54	Reprogrammable 3D Liquid rystalline Actuators with Precisely Controllable Stepwise Actuation. Advanced Intelligent Systems, 2021, 3, 2000249.	6.1	18

Yan Ji

#	Article	IF	CITATIONS
55	Poly(amidoamine) dendrimers with phenyl shells: fluorescence and aggregation behavior. Polymer, 2004, 45, 8395-8402.	3.8	17
56	Self-assembly of a new class of amphiphilic poly(amidoamine) dendrimers and their electrochemical properties. Journal of Polymer Science Part A, 2005, 43, 5512-5519.	2.3	17
57	A magnetic solder for assembling bulk covalent adaptable network blocks. Chemical Science, 2020, 11, 7694-7700.	7.4	15
58	Liquidâ€Crystalline Soft Actuators with Switchable Thermal Reprogrammability. Angewandte Chemie, 2020, 132, 4808-4814.	2.0	14
59	Self-assembly and supramolecular transition of poly(amidoamine) dendrons focally modified with aromatic chromophores. Journal of Colloid and Interface Science, 2007, 314, 289-296.	9.4	12
60	Poly(amidoamine) Dendrimers Bearing Electron-Donating Chromophores: Fluorescence and Electrochemical Properties. Polymer Bulletin, 2006, 56, 63-74.	3.3	10
61	Hierarchically Porous Chitosan–PEG–Silica Biohybrid: Synthesis and Rapid Cell Adsorption. Advanced Healthcare Materials, 2013, 2, 302-305.	7.6	10
62	Liquid Crystalline Network Composites Reinforced by Silica Nanoparticles. Materials, 2014, 7, 5356-5365.	2.9	8
63	Fast and reversible microscale formation of columns in carbon nanotube suspensions. Soft Matter, 2013, 9, 235-240.	2.7	2
64	The Cu/Fe magnetic yoke with novel interface and excellent mechanical properties by friction stir welding. Science and Technology of Welding and Joining, 2022, 27, 339-352.	3.1	2
65	Carbon nanotubes dispersed in liquid crystal elastomers. Series in Sof Condensed Matter, 2016, , 631-655.	0.1	1
66	SYNTHESIS AND CHARACTERIZATION OF PEPTIDE DENDRONS WITH GLY-GLU AS BUILDING BLOCKS. Acta	0.0	0

66 Polymerica Sinica, 2010, 006, 712-716.