
Craig Montell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/304770/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	TRP Channels. Annual Review of Biochemistry, 2007, 76, 387-417.	5.0	1,768
3	Molecular characterization of the drosophila trp locus: A putative integral membrane protein required for phototransduction. Neuron, 1989, 2, 1313-1323.	3.8	991
4	The TRP Channels, a Remarkably Functional Family. Cell, 2002, 108, 595-598.	13.5	772
5	The TRP Superfamily of Cation Channels. Science Signaling, 2005, 2005, re3-re3.	1.6	750
6	Isolation of a putative phospholipase c gene of drosophila, norpA, and its role in phototransduction. Cell, 1988, 54, 723-733.	13.5	660
7	A Unified Nomenclature for the Superfamily of TRP Cation Channels. Molecular Cell, 2002, 9, 229-231.	4.5	620
8	TRPC1, a human homolog of a Drosophila store-operated channel Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 9652-9656.	3.3	571
9	p53 Mediates Cellular Dysfunction and Behavioral Abnormalities in Huntington's Disease. Neuron, 2005, 47, 29-41.	3.8	437
10	Resolving the functions of overlapping viral genes by site-specific mutagenesis at a mRNA splice site. Nature, 1982, 295, 380-384.	13.7	426
11	repo encodes a glial-specific homeo domain protein required in the Drosophila nervous system Genes and Development, 1994, 8, 981-994.	2.7	372
12	Musashi, a neural RNA-binding protein required for drosophila adult external sensory organ development. Neuron, 1994, 13, 67-81.	3.8	366
13	International Union of Pharmacology. XLIX. Nomenclature and Structure-Function Relationships of Transient Receptor Potential Channels. Pharmacological Reviews, 2005, 57, 427-450.	7.1	365
14	Peripheral Coding of Taste. Neuron, 2014, 81, 984-1000.	3.8	357
15	TRPM5 Is a Voltage-Modulated and Ca2+-Activated Monovalent Selective Cation Channel. Current Biology, 2003, 13, 1153-1158.	1.8	353
16	The Drosophila ninaC locus encodes two photoreceptor cell specific proteins with domains homologous to protein kinases and the myosin heavy chain head. Cell, 1988, 52, 757-772.	13.5	312
17	The Molecular Basis for Attractive Salt-Taste Coding in <i>Drosophila</i> . Science, 2013, 340, 1334-1338.	6.0	312
18	Activation of a TRPC3-Dependent Cation Current through the Neurotrophin BDNF. Neuron, 1999, 24, 261-273.	3.8	311

#	Article	IF	CITATIONS
19	Inhibition of RNA cleavage but not polyadenylation by a point mutation in mRNA 3′ consensus sequence AAUAAA. Nature, 1983, 305, 600-605.	13.7	310
20	Complete transformation by adenovirus 2 requires both E1A proteins. Cell, 1984, 36, 951-961.	13.5	307
21	Visual Transduction in Drosophila. Annual Review of Cell and Developmental Biology, 1999, 15, 231-268.	4.0	302
22	Coassembly of TRP and TRPL Produces a Distinct Store-Operated Conductance. Cell, 1997, 89, 1155-1164.	13.5	299
23	Requirement for the PDZ Domain Protein, INAD, for Localization of the TRP Store-Operated Channel to a Signaling Complex. Neuron, 1997, 18, 95-105.	3.8	297
24	A taste of the Drosophila gustatory receptors. Current Opinion in Neurobiology, 2009, 19, 345-353.	2.0	258
25	Phototransduction and retinal degeneration in Drosophila. Pflugers Archiv European Journal of Physiology, 2007, 454, 821-847.	1.3	254
26	A <i>Drosophila</i> model for <i>LRRK2</i> -linked parkinsonism. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2693-2698.	3.3	250
27	A Drosophila Gustatory Receptor Essential for Aversive Taste and Inhibiting Male-to-Male Courtship. Current Biology, 2009, 19, 1623-1627.	1.8	237
28	A Taste Receptor Required for the Caffeine Response In Vivo. Current Biology, 2006, 16, 1812-1817.	1.8	228
29	International Union of Pharmacology. XLIII. Compendium of Voltage-Gated Ion Channels: Transient Receptor Potential Channels. Pharmacological Reviews, 2003, 55, 591-596.	7.1	227
30	Rescue of the Drosophila phototransduction mutation trp by germline transformation. Science, 1985, 230, 1040-1043.	6.0	224
31	Coordination of an Array of Signaling Proteins through Homo- and Heteromeric Interactions Between PDZ Domains and Target Proteins. Journal of Cell Biology, 1998, 142, 545-555.	2.3	219
32	An Odorant-Binding Protein Required for Suppression of Sweet Taste by Bitter Chemicals. Neuron, 2013, 79, 725-737.	3.8	215
33	Gr64f Is Required in Combination with Other Gustatory Receptors for Sugar Detection in Drosophila. Current Biology, 2008, 18, 1797-1801.	1.8	213
34	Drosophila visual transduction. Trends in Neurosciences, 2012, 35, 356-363.	4.2	213
35	Kinetic Scaffolding Mediated by a Phospholipase C–β and G _q Signaling Complex. Science, 2010, 330, 974-980.	6.0	209
36	Regulation of melastatin, a TRP-related protein, through interaction with a cytoplasmic isoform. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 10692-10697.	3.3	207

#	Article	IF	CITATIONS
37	Multiple gustatory receptors required for the caffeine response in <i>Drosophila</i> . Proceedings of the United States of America, 2009, 106, 4495-4500.	3.3	207
38	A second opsin gene expressed in the ultraviolet-sensitive R7 photoreceptor cells of Drosophila melanogaster. Journal of Neuroscience, 1987, 7, 1558-1566.	1.7	205
39	Avoiding DEET through Insect Gustatory Receptors. Neuron, 2010, 67, 555-561.	3.8	195
40	A rhodopsin gene expressed in photoreceptor cell R7 of the Drosophila eye: homologies with other signal-transducing molecules. Journal of Neuroscience, 1987, 7, 1550-1557.	1.7	194
41	A <i>Drosophila</i> gustatory receptor required for the responses to sucrose, glucose, and maltose identified by mRNA tagging. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14110-14115.	3.3	193
42	Motor Deficit in a Drosophila Model of Mucolipidosis Type IV due to Defective Clearance of Apoptotic Cells. Cell, 2008, 135, 838-851.	13.5	191
43	Function of Rhodopsin in Temperature Discrimination in <i>Drosophila</i> . Science, 2011, 331, 1333-1336.	6.0	190
44	Integration of Phosphoinositide- and Calmodulin-Mediated Regulation of TRPC6. Molecular Cell, 2007, 25, 491-503.	4.5	180
45	TRP and the PDZ Protein, Inad, Form the Core Complex Required for Retention of the Signalplex in Drosophila Photoreceptor Cells. Journal of Cell Biology, 2000, 150, 1411-1422.	2.3	170
46	<i>Drosophila</i> TRPA1 channel mediates chemical avoidance in gustatory receptor neurons. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8440-8445.	3.3	160
47	tramtrack is a transcriptional repressor required for cell fate determination in the Drosophila eye Genes and Development, 1993, 7, 1085-1096.	2.7	158
48	TRPγ, a Drosophila TRP–Related Subunit, Forms a Regulated Cation Channel with TRPL. Neuron, 2000, 26, 647-657.	3.8	155
49	Drosophila TRPA1 Channel Is Required to Avoid the Naturally Occurring Insect Repellent Citronellal. Current Biology, 2010, 20, 1672-1678.	1.8	154
50	Assessment of the Role of the Inositol 1,4,5-Trisphosphate Receptor in the Activation of Transient Receptor Potential Channels and Store-operated Ca2+ Entry Channels. Journal of Biological Chemistry, 2001, 276, 18888-18896.	1.6	152
51	Dependence of calmodulin localization in the retina on the NINAC unconventional myosin. Science, 1993, 262, 1038-1042.	6.0	150
52	Control of thermotactic behavior via coupling of a TRP channel to a phospholipase C signaling cascade. Nature Neuroscience, 2008, 11, 871-873.	7.1	150
53	Drosophila TRP channels and animal behavior. Life Sciences, 2013, 92, 394-403.	2.0	145
54	Differential localizations of and requirements for the two Drosophila ninaC kinase/myosins in photoreceptor cells Journal of Cell Biology, 1992, 116, 683-693.	2.3	142

#	Article	IF	CITATIONS
55	A Flagellar Polycystin-2 Homolog Required for Male Fertility in Drosophila. Current Biology, 2003, 13, 2179-2184.	1.8	142
56	Termination of phototransduction requires binding of the NINAC myosin III and the PDZ protein INAD. Nature Neuroscience, 1999, 2, 447-453.	7.1	138
57	Lysosomal Localization of TRPML3 Depends on TRPML2 and the Mucolipidosis-associated Protein TRPML1. Journal of Biological Chemistry, 2006, 281, 17517-17527.	1.6	131
58	WIDE AWAKE Mediates the Circadian Timing of Sleep Onset. Neuron, 2014, 82, 151-166.	3.8	128
59	New Light on TRP and TRPL. Molecular Pharmacology, 1997, 52, 755-763.	1.0	123
60	TRP trapped in fly signaling web. Current Opinion in Neurobiology, 1998, 8, 389-397.	2.0	122
61	Distinct roles of the Drosophila ninaC kinase and myosin domains revealed by systematic mutagenesis. Journal of Cell Biology, 1993, 122, 601-612.	2.3	120
62	Enhanced expression of adenovirus transforming proteins. Journal of Virology, 1982, 44, 276-285.	1.5	120
63	Light Activation, Adaptation, and Cell Survival Functions of the Na+/Ca2+ Exchanger CalX. Neuron, 2005, 45, 367-378.	3.8	118
64	Forcing open TRP channels: Mechanical gating as a unifying activation mechanism. Biochemical and Biophysical Research Communications, 2015, 460, 22-25.	1.0	117
65	Requirement for Drosophila SNMP1 for Rapid Activation and Termination of Pheromone-Induced Activity. PLoS Genetics, 2014, 10, e1004600.	1.5	114
66	A rhodopsin in the brain functions in circadian photoentrainment in Drosophila. Nature, 2017, 545, 340-344.	13.7	113
67	A lysosomal tetraspanin associated with retinal degeneration identified via a genome-wide screen. EMBO Journal, 2004, 23, 811-822.	3.5	108
68	Defective glia induce neuronal apoptosis in the repo visual system of Drosophila. Neuron, 1995, 14, 581-590.	3.8	107
69	Drosophila TRP channels. Pflugers Archiv European Journal of Physiology, 2005, 451, 19-28.	1.3	107
70	Unconventional Roles of Opsins. Annual Review of Cell and Developmental Biology, 2017, 33, 241-264.	4.0	107
71	Requirement for an Enzymatic Visual Cycle in Drosophila. Current Biology, 2010, 20, 93-102.	1.8	106
72	Light Adaptation through Phosphoinositide-Regulated Translocation of Drosophila Visual Arrestin. Neuron, 2003, 39, 121-132.	3.8	102

#	Article	IF	CITATIONS
73	Fine Thermotactic Discrimination between the Optimal and Slightly Cooler Temperatures via a TRPV Channel in Chordotonal Neurons. Journal of Neuroscience, 2010, 30, 10465-10471.	1.7	102
74	The full repertoire of Drosophila gustatory receptors for detecting an aversive compound. Nature Communications, 2015, 6, 8867.	5.8	101
75	Drosophila TRPML Is Required for TORC1 Activation. Current Biology, 2012, 22, 1616-1621.	1.8	99
76	Mg2+ Homeostasis: The Mg2+nificent TRPM Chanzymes. Current Biology, 2003, 13, R799-R801.	1.8	95
77	The history of TRP channels, a commentary and reflection. Pflugers Archiv European Journal of Physiology, 2011, 461, 499-506.	1.3	95
78	The Basis of Food Texture Sensation in Drosophila. Neuron, 2016, 91, 863-877.	3.8	90
79	Retinal Targets for Calmodulin Include Proteins Implicated in Synaptic Transmission. Journal of Biological Chemistry, 1998, 273, 31297-31307.	1.6	89
80	Light-Dependent Translocation of Visual Arrestin Regulated by the NINAC Myosin III. Neuron, 2004, 43, 95-103.	3.8	88
81	Dissection of the pathway required for generation of vitamin A and for Drosophila phototransduction. Journal of Cell Biology, 2007, 177, 305-316.	2.3	88
82	Defective Proboscis Extension Response (DPR), a Member of the Ig Superfamily Required for the Gustatory Response to Salt. Journal of Neuroscience, 2002, 22, 3463-3472.	1.7	77
83	TRPA1 mediates sensation of the rate of temperature change in Drosophila larvae. Nature Neuroscience, 2017, 20, 34-41.	7.1	77
84	Calcium Taste Avoidance in Drosophila. Neuron, 2018, 97, 67-74.e4.	3.8	77
85	TRP channels inDrosophilaphotoreceptor cells. Journal of Physiology, 2005, 567, 45-51.	1.3	75
86	Oxidative stress induces stem cell proliferation via TRPA1/RyR-mediated Ca2+ signaling in the Drosophila midgut. ELife, 2017, 6, .	2.8	75
87	Suppressing mosquito populations with precision guided sterile males. Nature Communications, 2021, 12, 5374.	5.8	73
88	Gustatory Receptors Required for Avoiding the Insecticide l-Canavanine. Journal of Neuroscience, 2012, 32, 1429-1435.	1.7	71
89	Food experience–induced taste desensitization modulated by the Drosophila TRPL channel. Nature Neuroscience, 2013, 16, 1468-1476.	7.1	71
90	A Switch in Thermal Preference in Drosophila Larvae Depends on Multiple Rhodopsins. Cell Reports, 2016, 17, 336-344.	2.9	68

#	Article	IF	CITATIONS
91	Core commitments for field trials of gene drive organisms. Science, 2020, 370, 1417-1419.	6.0	67
92	Differential regulation of the Drosophila sleep homeostat by circadian and arousal inputs. ELife, 2019, 8, .	2.8	67
93	The venerable inveterate invertebrate TRP channels. Cell Calcium, 2003, 33, 409-417.	1.1	65
94	Drosophila Sperm Swim Backwards in the Female Reproductive Tract and Are Activated via TRPP2 Ion Channels. PLoS ONE, 2011, 6, e20031.	1.1	62
95	Calmodulin Regulation of Calcium Stores in Phototransduction of Drosophila. Science, 1997, 275, 1119-1121.	6.0	60
96	Mechanism of Acetic Acid Gustatory Repulsion in Drosophila. Cell Reports, 2019, 26, 1432-1442.e4.	2.9	60
97	Control of adenovirus E1B mRNA synthesis by a shift in the activities of RNA splice sites Molecular and Cellular Biology, 1984, 4, 966-972.	1.1	58
98	<i>Drosophila</i> TRPA1 Functions in Temperature Control of Circadian Rhythm in Pacemaker Neurons. Journal of Neuroscience, 2013, 33, 6716-6725.	1.7	57
99	Dissecting independent channel and scaffolding roles of the Drosophila transient receptor potential channel. Journal of Cell Biology, 2005, 171, 685-694.	2.3	54
100	Mosquito Sensory Systems. Advances in Insect Physiology, 2016, , 293-328.	1.1	53
101	Functions of Opsins in Drosophila Taste. Current Biology, 2020, 30, 1367-1379.e6.	1.8	53
102	Regulation of the Rhodopsin Protein Phosphatase, RDGC, through Interaction with Calmodulin. Neuron, 2001, 32, 1097-1106.	3.8	52
103	In Vivo Identification and Manipulation of the Ca2+ Selectivity Filter in the Drosophila Transient Receptor Potential Channel. Journal of Neuroscience, 2007, 27, 604-615.	1.7	52
104	Requirement for the NINAC Kinase/Myosin for Stable Termination of the Visual Cascade. Journal of Neuroscience, 1998, 18, 9601-9606.	1.7	49
105	Regulation of Drosophila neural development by a putative secreted protein. Differentiation, 1992, 52, 1-11.	1.0	48
106	<i>Drosophila</i> sensory receptors—a set of molecular Swiss Army Knives. Genetics, 2021, 217, 1-34.	1.2	48
107	The <i>Drosophila</i> Visual Cycle and <i>De Novo</i> Chromophore Synthesis Depends on <i>rdhB</i> . Journal of Neuroscience, 2012, 32, 3485-3491.	1.7	47
108	Evolutionarily Conserved, Multitasking TRP Channels: Lessons from Worms and Flies. Handbook of Experimental Pharmacology, 2014, 223, 937-962.	0.9	47

#	Article	IF	CITATIONS
109	Rhodopsin Formation in Drosophila Is Dependent on the PINTA Retinoid-Binding Protein. Journal of Neuroscience, 2005, 25, 5187-5194.	1.7	45
110	A Drosophila Gustatory Receptor Required for Strychnine Sensation. Chemical Senses, 2015, 40, 525-533.	1.1	45
111	Rhodopsin kinase activity modulates the amplitude of the visual response in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11874-11879.	3.3	43
112	Thermoregulation: Channels that Are Cool to the Core. Current Biology, 2007, 17, R885-R887.	1.8	43
113	Drosophila TRPM Channel Is Essential for the Control of Extracellular Magnesium Levels. PLoS ONE, 2010, 5, e10519.	1.1	43
114	A Phosphoinositide Synthase Required for a Sustained Light Response. Journal of Neuroscience, 2006, 26, 12816-12825.	1.7	40
115	Calmodulin regulation of light adaptation and store-operated dark current in Drosophila photoreceptors. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 5894-5899.	3.3	39
116	Coordination and fine motor control depend on Drosophila TRPγ. Nature Communications, 2015, 6, 7288.	5.8	37
117	Neuromodulation of Courtship Drive through Tyramine-Responsive Neurons in the Drosophila Brain. Current Biology, 2016, 26, 2246-2256.	1.8	37
118	Exciting trips for TRPs. Nature Cell Biology, 2004, 6, 690-692.	4.6	35
119	Feast or famine. Autophagy, 2013, 9, 98-100.	4.3	35
120	Dependence on the Lazaro Phosphatidic Acid Phosphatase for the Maximum Light Response. Current Biology, 2006, 16, 723-729.	1.8	34
121	An octopamine receptor confers selective toxicity of amitraz on honeybees and Varroa mites. ELife, 2021, 10, .	2.8	34
122	Suppression of Constant-Light-Induced Blindness but Not Retinal Degeneration by Inhibition of the Rhodopsin Degradation Pathway. Current Biology, 2004, 14, 2076-2085.	1.8	33
123	Neuropeptide F regulates courtship in Drosophila through a male-specific neuronal circuit. ELife, 2019, 8, .	2.8	33
124	Dynamic Regulation of the INAD Signaling Scaffold Becomes Crystal Clear. Cell, 2007, 131, 19-21.	13.5	32
125	Suppression of female fertility in <i>Aedes aegypti</i> with a CRISPR-targeted male-sterile mutation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	32
126	Activation of an Essential Calcium Signaling Pathway in Saccharomyces cerevisiae by Kch1 and Kch2, Putative Low-Affinity Potassium Transporters. Eukaryotic Cell, 2013, 12, 204-214.	3.4	31

#	Article	IF	CITATIONS
127	Thermosensation: Hot Findings Make TRPNs Very Cool. Current Biology, 2003, 13, R476-R478.	1.8	29
128	Dependence on a Retinophilin/Myosin Complex for Stability of PKC and INAD and Termination of Phototransduction. Journal of Neuroscience, 2010, 30, 11337-11345.	1.7	29
129	The olfactory gating of visual preferences to human skin and visible spectra in mosquitoes. Nature Communications, 2022, 13, 555.	5.8	29
130	Mechanism for food texture preference based on grittiness. Current Biology, 2021, 31, 1850-1861.e6.	1.8	27
131	The SOCS Box Protein STOPS Is Required forÂPhototransduction through Its EffectsÂonÂPhospholipase C. Neuron, 2008, 57, 56-68.	3.8	24
132	Elimination of mRNA splicing by a point mutation outside the conserved GU at 5′ splice sites. Nucleic Acids Research, 1984, 12, 3821-3827.	6.5	23
133	Temperature and Sweet Taste Integration in Drosophila. Current Biology, 2020, 30, 2051-2067.e5.	1.8	23
134	Requirement for an Otopetrin-like protein for acid taste in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	23
135	Reversing insecticide resistance with allelic-drive in Drosophila melanogaster. Nature Communications, 2022, 13, 291.	5.8	21
136	Activated RIC, a small GTPase, genetically interacts with the Ras pathway and calmodulin duringDrosophila development. Developmental Dynamics, 2005, 232, 817-826.	0.8	20
137	TRP Channels: It's Not the Heat, It's the Humidity. Current Biology, 2008, 18, R123-R126.	1.8	19
138	Gustatory Receptors: Not Just for Good Taste. Current Biology, 2013, 23, R929-R932.	1.8	19
139	Structural Insights into the <i>Drosophila melanogaster</i> Retinol Dehydrogenase, a Member of the Short-Chain Dehydrogenase/Reductase Family. Biochemistry, 2016, 55, 6545-6557.	1.2	19
140	The Role of Y Chromosome Genes in Male Fertility in <i>Drosophila melanogaster</i> . Genetics, 2020, 215, 623-633.	1.2	19
141	The mitochondrial transporter SLC25A25 links ciliary TRPP2 signaling and cellular metabolism. PLoS Biology, 2018, 16, e2005651.	2.6	18
142	A PDZ protein ushers in new links. Nature Genetics, 2000, 26, 6-7.	9.4	17
143	Molecular genetics of drosophila vision. BioEssays, 1989, 11, 43-48.	1.2	16
144	Light-induced translocation of Drosophila visual Arrestin2 depends on Rac2. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4740-4745.	3.3	15

#	Article	IF	CITATIONS
145	Elimination of vision-guided target attraction in Aedes aegypti using CRISPR. Current Biology, 2021, 31, 4180-4187.e6.	1.8	15
146	Take a TRP to beat the heat. Genes and Development, 2005, 19, 415-418.	2.7	13
147	Suppression of the motor deficit in a mucolipidosis type IV mouse model by bone marrow transplantation. Human Molecular Genetics, 2016, 25, ddw132.	1.4	13
148	An Exciting Release on TRPM7. Neuron, 2006, 52, 395-397.	3.8	12
149	Dietary restriction and the transcription factor clock delay eye aging to extend lifespan in Drosophila Melanogaster. Nature Communications, 2022, 13, .	5.8	12
150	An End in Sight to a Long TRP. Neuron, 2001, 30, 3-5.	3.8	11
151	TRP and Rhodopsin Transport Depends on Dual XPORT ER Chaperones Encoded by an Operon. Cell Reports, 2015, 13, 573-584.	2.9	11
152	A mint of mutations in TRPM8 leads to cool results. Nature Neuroscience, 2006, 9, 466-468.	7.1	10
153	pHirst sour taste channels pHound?. Science, 2018, 359, 991-992.	6.0	9
154	Rapid Release of Ca ²⁺ from Endoplasmic Reticulum Mediated by Na ⁺ /Ca ²⁺ Exchange. Journal of Neuroscience, 2020, 40, 3152-3164.	1.7	9
155	Molecular Genetics of Drosophila TRP Channels. Novartis Foundation Symposium, 2008, , 3-17.	1.2	8
156	PLC fills a GAP in G-protein-coupled signalling. Nature Cell Biology, 2000, 2, E82-E83.	4.6	7
157	In Search of the Holy Grail for Drosophila TRP. Neuron, 2008, 58, 825-827.	3.8	7
158	RdgB2 is required for dim-light input into intrinsically photosensitive retinal ganglion cells. Molecular Biology of the Cell, 2015, 26, 3671-3678.	0.9	7
159	Calmodulin binds to Drosophila TRP with an unexpected mode. Structure, 2021, 29, 330-344.e4.	1.6	7
160	Preventing a Perm with TRPV3. Cell, 2010, 141, 218-220.	13.5	6
161	Coordinated Movement: Watching Proprioception Unfold. Current Biology, 2019, 29, R202-R205.	1.8	6
162	An Autonomous Molecular Bioluminescent Reporter (AMBER) for Voltage Imaging in Freely Moving Animals. Advanced Biology, 2021, 5, e2100842.	1.4	6

#	Article	IF	CITATIONS
163	Drosophila TRPÎ 3 is required in neuroendocrine cells for post-ingestive food selection. ELife, 2022, 11, .	2.8	6
164	Cell regulation. Current Opinion in Cell Biology, 2004, 16, 115-118.	2.6	4
165	A Family of Auxiliary Subunits of the TRP Cation Channel Encoded by the Complex <i>inaF</i> Locus. Genetics, 2020, 215, 713-728.	1.2	4
166	A DREaMR system to simplify combining mutations with rescue transgenes in <i>Aedes aegypti</i> . Genetics, 2021, 219, .	1.2	3
167	Molecular genetics of Drosophila TRP channels. Novartis Foundation Symposium, 2004, 258, 3-12; discussion 12-7, 98-102, 263-6.	1.2	3
168	A Temperature Gradient Assay to Determine Thermal Preferences of Drosophila Larvae. Journal of Visualized Experiments, 2018, , .	0.2	1
169	Conserved Modules Required for <i>Drosophila</i> TRP Function <i>in Vivo</i> . Journal of Neuroscience, 2021, 41, 5822-5832.	1.7	1
170	From taste to touch: sensory signaling in model organisms. Pflugers Archiv European Journal of Physiology, 2007, 454, 689-690.	1.3	0
171	Regulation of Drosophila Visual Transduction Through a Supramolecular Signaling Complex. , 2000, , 85-97.		0
172	NinaC., 1995,, 371-373.		0

172 NinaC., 1995,, 371-373.