List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3047695/publications.pdf Version: 2024-02-01

		30047	24232
118	16,163	54	110
papers	citations	h-index	g-index
118 all docs	118 docs citations	118 times ranked	19521 citing authors

#	Article	IF	CITATIONS
1	Aged healthy mice acquire clonal hematopoiesis mutations. Blood, 2022, 139, 629-634.	0.6	13
2	T cells targeted to TdT kill leukemic lymphoblasts while sparing normal lymphocytes. Nature Biotechnology, 2022, 40, 488-498.	9.4	12
3	DNMT1 Deficiency Impacts on Plasmacytoid Dendritic Cells in Homeostasis and Autoimmune Disease. Journal of Immunology, 2022, 208, 358-370.	0.4	5
4	The extent of residual WT HSPCs is associated with the degree of anemia in patients with <i>SF3B1</i> -mutated MDS-RS. Blood Advances, 2022, 6, 4705-4709.	2.5	2
5	Tissue-resident macrophages regulate lymphatic vessel growth and patterning in the developing heart. Development (Cambridge), 2021, 148, .	1.2	55
6	Environmental signals rather than layered ontogeny imprint the function of type 2 conventional dendritic cells in young and adult mice. Nature Communications, 2021, 12, 464.	5.8	25
7	Integrative Analysis of Primary <i>SF3B1 mt</i> Ring Sideroblasts Provides Fundamental Insights into MDS-RS Pathogenesis and Dyserythropoiesis. Blood, 2021, 138, 146-146.	0.6	2
8	Ezh2 is essential for the generation of functional yolk sac derived erythro-myeloid progenitors. Nature Communications, 2021, 12, 7019.	5.8	8
9	The onset of circulation triggers a metabolic switch required for endothelial to hematopoietic transition. Cell Reports, 2021, 37, 110103.	2.9	17
10	Prediction of Relapse after Allogeneic Stem Cell Transplantation Using Individualized Minimal Residual Markers; The Prospective Nordic Study NMDSG14B. Blood, 2020, 136, 5-6.	0.6	0
11	Unravelling Intratumoral Heterogeneity through High-Sensitivity Single-Cell Mutational Analysis and Parallel RNA Sequencing. Molecular Cell, 2019, 73, 1292-1305.e8.	4.5	218
12	Haematopoiesis in the era of advanced single-cell technologies. Nature Cell Biology, 2019, 21, 2-8.	4.6	89
13	Canonical Notch signaling is dispensable for adult steady-state and stress myelo-erythropoiesis. Blood, 2018, 131, 1712-1719.	0.6	14
14	Ezh2 and Runx1 Mutations Collaborate to Initiate Lympho-Myeloid Leukemia in Early Thymic Progenitors. Cancer Cell, 2018, 33, 274-291.e8.	7.7	58
15	Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells. Nature, 2018, 554, 106-111.	13.7	269
16	Cell-extrinsic hematopoietic impact of Ezh2 inactivation in fetal liver endothelial cells. Blood, 2018, 131, 2223-2234.	0.6	17
17	Loss of Canonical Notch Signaling Affects Multiple Steps in NK Cell Development in Mice. Journal of Immunology, 2018, 201, 3307-3319.	0.4	11
18	Kit ligand has a critical role in mouse yolk sac and aorta–gonad–mesonephros hematopoiesis. EMBO Reports, 2018, 19, .	2.0	35

#	Article	IF	CITATIONS
19	Origins of ETP leukemia. Oncoscience, 2018, 5, 271-272.	0.9	3
20	Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia. Nature Medicine, 2017, 23, 692-702.	15.2	336
21	SF3B1-initiating mutations in MDS-RSs target lymphomyeloid hematopoietic stem cells. Blood, 2017, 130, 881-890.	0.6	66
22	Progression in patients with low- and intermediate-1-risk del(5q) myelodysplastic syndromes is predicted by a limited subset of mutations. Haematologica, 2017, 102, 498-508.	1.7	34
23	Autophagy-Dependent Generation of Free Fatty Acids Is Critical for Normal Neutrophil Differentiation. Immunity, 2017, 47, 466-480.e5.	6.6	230
24	Mbd3/NuRD controls lymphoid cell fate and inhibits tumorigenesis by repressing a B cell transcriptional program. Journal of Experimental Medicine, 2017, 214, 3085-3104.	4.2	21
25	Integrative Genomics Identifies the Molecular Basis of Resistance to Azacitidine Therapy in Myelodysplastic Syndromes. Cell Reports, 2017, 20, 572-585.	2.9	99
26	Niche-mediated depletion of the normal hematopoietic stem cell reservoir by Flt3-ITD–induced myeloproliferation. Journal of Experimental Medicine, 2017, 214, 2005-2021.	4.2	43
27	Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells. Nature Communications, 2016, 7, 11075.	5.8	238
28	Distinct myeloid progenitor–differentiation pathways identified through single-cell RNA sequencing. Nature Immunology, 2016, 17, 666-676.	7.0	188
29	Macrophage colony-stimulating factor receptor marks and regulates a fetal myeloid-primed B-cell progenitor in mice. Blood, 2016, 128, 217-226.	0.6	29
30	Mll-AF4 Confers Enhanced Self-Renewal and Lymphoid Potential during a Restricted Window in Development. Cell Reports, 2016, 16, 1039-1054.	2.9	34
31	Initial seeding of the embryonic thymus by immune-restricted lympho-myeloid progenitors. Nature Immunology, 2016, 17, 1424-1435.	7.0	49
32	A dynamic niche provides Kit ligand in a stage-specific manner to the earliest thymocyte progenitors. Nature Cell Biology, 2016, 18, 157-167.	4.6	57
33	Perturbed hematopoietic stem and progenitor cell hierarchy in myelodysplastic syndromes patients with monosomy 7 as the sole cytogenetic abnormality. Oncotarget, 2016, 7, 72685-72698.	0.8	21
34	Autophagy limits proliferation and glycolytic metabolism in acute myeloid leukemia. Cell Death Discovery, 2015, 1, .	2.0	125
35	Erythropoietin guides multipotent hematopoietic progenitor cells toward an erythroid fate. Journal of Experimental Medicine, 2014, 211, 181-188.	4.2	111
36	Myelodysplastic Syndromes Are Propagated by Rare and Distinct Human Cancer Stem Cells InÂVivo. Cancer Cell, 2014, 25, 794-808.	7.7	272

#	Article	IF	CITATIONS
37	Characterization of the Hematopoietic Stem and Progenitor Cell Hierarchy in Myelodysplastic Syndromes Patients with Monosomy 7 As the Sole Cytogenetic Abnormality. Blood, 2014, 124, 3490-3490.	0.6	16
38	Identification of a Prognostic Gene Expression Signature for AZA Response in MDS and CMML Patients. Blood, 2014, 124, 4601-4601.	0.6	0
39	Characterisation of the Stem and Progenitor Cell Hierarchy in Patients with CMML. Blood, 2014, 124, 1896-1896.	0.6	0
40	Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature, 2013, 502, 232-236.	13.7	493
41	FLT3-ITDs Instruct a Myeloid Differentiation and Transformation Bias in Lymphomyeloid Multipotent Progenitors. Cell Reports, 2013, 3, 1766-1776.	2.9	40
42	Lymphomyeloid Contribution of an Immune-Restricted Progenitor Emerging Prior to Definitive Hematopoietic Stem Cells. Cell Stem Cell, 2013, 13, 535-548.	5.2	225
43	Impact of isolated germline JAK2V617I mutation on human hematopoiesis. Blood, 2013, 121, 4156-4165.	0.6	42
44	Germline Counterparts of Oncogenic Mutations: Who Gives a JAK?. Oncotarget, 2013, 4, 814-815.	0.8	0
45	Germline <i>JAK2</i> Mutation in a Family with Hereditary Thrombocytosis. New England Journal of Medicine, 2012, 366, 967-969.	13.9	98
46	Emergence of NK-cell progenitors and functionally competent NK-cell lineage subsets in the early mouse embryo. Blood, 2012, 120, 63-75.	0.6	31
47	The earliest thymic T cell progenitors sustain B cell and myeloid lineage potential. Nature Immunology, 2012, 13, 412-419.	7.0	132
48	Dicer is selectively important for the earliest stages of erythroid development. Blood, 2012, 120, 2412-2416.	0.6	12
49	Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow. Journal of Experimental Medicine, 2012, 209, 537-549.	4.2	185
50	A Lineage of Myeloid Cells Independent of Myb and Hematopoietic Stem Cells. Science, 2012, 336, 86-90.	6.0	2,084
51	Clever Leukemic Stem Cells Branch Out. Cell Stem Cell, 2011, 8, 242-244.	5.2	9
52	Impact of gene dosage, loss of wild-type allele, and FLT3 ligand on Flt3-ITD–induced myeloproliferation. Blood, 2011, 118, 3613-3621.	0.6	26
53	FLT3 expression initiates in fully multipotent mouse hematopoietic progenitor cells. Blood, 2011, 118, 1544-1548.	0.6	62
54	GATA3 is redundant for maintenance and self-renewal of hematopoietic stem cells. Blood, 2011, 118, 1291-1293.	0.6	23

#	Article	IF	CITATIONS
55	Hoxb4-YFP reporter mouse model: a novel tool for tracking HSC development and studying the role of Hoxb4 in hematopoiesis. Blood, 2011, 117, 3521-3528.	0.6	30
56	Coexistence of LMPP-like and GMP-like Leukemia Stem Cells in Acute Myeloid Leukemia. Cancer Cell, 2011, 19, 138-152.	7.7	545
57	Generation of bivalent chromatin domains during cell fate decisions. Epigenetics and Chromatin, 2011, 4, 9.	1.8	54
58	Tumor necrosis factor restricts hematopoietic stem cell activity in mice: involvement of two distinct receptors. Journal of Experimental Medicine, 2011, 208, 1563-1570.	4.2	175
59	The Earliest Thymic T Cell Progenitors Sustain B Cell and Myeloid Lineage Potentials. Blood, 2011, 118, 2335-2335.	0.6	0
60	Expression and role of FLT3 in regulation of the earliest stage of normal granulocyte-monocyte progenitor development. Blood, 2010, 115, 5061-5068.	0.6	37
61	Identification of an NK/T cell–restricted progenitor in adult bone marrow contributing to bone marrow– and thymic-dependent NK cells. Blood, 2010, 116, 183-192.	0.6	39
62	Persistent Malignant Stem Cells in del(5q) Myelodysplasia in Remission. New England Journal of Medicine, 2010, 363, 1025-1037.	13.9	236
63	Co-Existence of LMPP-Like and GMP-Like Leukemia Stem Cells In Acute Myeloid Leukemia. Blood, 2010, 116, 91-91.	0.6	Ο
64	Distinct and Overlapping Patterns of Cytokine Regulation of Thymic and Bone Marrow-Derived NK Cell Development. Journal of Immunology, 2009, 182, 1460-1468.	0.4	18
65	Hematopoietic Stem Cell Expansion Precedes the Generation of Committed Myeloid Leukemia-Initiating Cells in C/EBPα Mutant AML. Cancer Cell, 2009, 16, 390-400.	7.7	133
66	Instructions writ in blood. Nature, 2009, 461, 183-184.	13.7	17
67	DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nature Genetics, 2009, 41, 1207-1215.	9.4	412
68	High GATA-2 expression inhibits human hematopoietic stem and progenitor cell function by effects on cell cycle. Blood, 2009, 113, 2661-2672.	0.6	103
69	FLT3 receptor and ligand are dispensable for maintenance and posttransplantation expansion of mouse hematopoietic stem cells. Blood, 2009, 113, 3453-3460.	0.6	31
70	Myeloid and lymphoid contribution to non-haematopoietic lineages through irradiation-induced heterotypic cell fusion. Nature Cell Biology, 2008, 10, 584-592.	4.6	143
71	Modeling of C/EBPα Mutant Acute Myeloid Leukemia Reveals a Common Expression Signature of Committed Myeloid Leukemia-Initiating Cells. Cancer Cell, 2008, 13, 299-310.	7.7	225
72	Exit of pediatric pre-B acute lymphoblastic leukaemia cells from the bone marrow to the peripheral blood is not associated with cell maturation or alterations in gene expression. Molecular Cancer, 2008, 7, 67.	7.9	0

#	Article	IF	CITATIONS
73	Delineating the cellular pathways of hematopoietic lineage commitment. Seminars in Immunology, 2008, 20, 213-220.	2.7	40
74	Involvement of CCR9 at multiple stages of adult T lymphopoiesis. Journal of Leukocyte Biology, 2008, 83, 156-164.	1.5	27
75	NMD is essential for hematopoietic stem and progenitor cells and for eliminating by-products of programmed DNA rearrangements. Genes and Development, 2008, 22, 1381-1396.	2.7	231
76	Down-regulation of Mpl marks the transition to lymphoid-primed multipotent progenitors with gradual loss of granulocyte-monocyte potential. Blood, 2008, 111, 3424-3434.	0.6	35
77	Permissive roles of hematopoietin and cytokine tyrosine kinase receptors in early T-cell development. Blood, 2008, 111, 2083-2090.	0.6	18
78	B-lineage commitment prior to surface expression of B220 and CD19 on hematopoietic progenitor cells. Blood, 2008, 112, 1048-1055.	0.6	72
79	FLT3 ligand and not TSLP is the key regulator of IL-7–independent B-1 and B-2 B lymphopoiesis. Blood, 2008, 112, 2297-2304.	0.6	55
80	Distinct roles of integrins α6 and α4 in homing of fetal liver hematopoietic stem and progenitor cells. Blood, 2007, 110, 2399-2407.	0.6	60
81	The molecular signature of MDS stem cells supports a stem-cell origin of 5qâ^ myelodysplastic syndromes. Blood, 2007, 110, 3005-3014.	0.6	107
82	Ectopic expression of PAX5 promotes maintenance of biphenotypic myeloid progenitors coexpressing myeloid and B-cell lineage-associated genes. Blood, 2007, 109, 3697-3705.	0.6	25
83	Critical role of FLT3 ligand in IL-7 receptor–independent T lymphopoiesis and regulation of lymphoid-primed multipotent progenitors. Blood, 2007, 110, 2955-2964.	0.6	66
84	Potential risks of bone marrow cell transplantation into infarcted hearts. Blood, 2007, 110, 1362-1369.	0.6	580
85	Delineation of the earliest lineage commitment steps of haematopoietic stem cells: new developments, controversies and major challenges. Current Opinion in Hematology, 2007, 14, 315-321.	1.2	36
86	Critical Role of Thrombopoietin in Maintaining Adult Quiescent Hematopoietic Stem Cells. Cell Stem Cell, 2007, 1, 671-684.	5.2	462
87	Molecular Evidence for Hierarchical Transcriptional Lineage Priming in Fetal and Adult Stem Cells and Multipotent Progenitors. Immunity, 2007, 26, 407-419.	6.6	316
88	Crucial role of FLT3 ligand in immune reconstitution after bone marrow transplantation and high-dose chemotherapy. Blood, 2007, 110, 424-432.	0.6	37
89	TSLP-mediated fetal B lymphopoiesis?. Nature Immunology, 2007, 8, 897-897.	7.0	8
90	Biological and Molecular Evidence for Existence of Lymphoid-Primed Multipotent Progenitors. Annals of the New York Academy of Sciences, 2007, 1106, 89-94.	1.8	23

#	Article	IF	CITATIONS
91	Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nature Immunology, 2006, 7, 1048-1056.	7.0	407
92	Failure of Transdifferentiation of Adult Hematopoietic Stem Cells into Neurons. Stem Cells, 2006, 24, 1594-1604.	1.4	56
93	Cytokines regulate postnatal hematopoietic stem cell expansion: opposing roles of thrombopoietin and LNK. Genes and Development, 2006, 20, 2018-2023.	2.7	110
94	Failure of Transplanted Bone Marrow Cells to Adopt a Pancreatic Â-Cell Fate. Diabetes, 2006, 55, 290-296.	0.3	112
95	Prolonged Cell Cycle Transit Is a Defining and Developmentally Conserved Hemopoietic Stem Cell Property. Journal of Immunology, 2006, 177, 201-208.	0.4	64
96	Identification of Lin–Sca1+kit+CD34+Flt3– short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. Blood, 2005, 105, 2717-2723.	0.6	378
97	Differential regulation of granulopoiesis by the basic helix-loop-helix transcriptional inhibitors Id1 and Id2. Blood, 2005, 105, 4272-4281.	0.6	61
98	Defining 'stemness': Notch and Wnt join forces?. Nature Immunology, 2005, 6, 234-236.	7.0	13
99	Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia. Nature Medicine, 2005, 11, 630-637.	15.2	296
100	Deficiency of oncoretrovirally transduced hematopoietic stem cells and correction throughex vivoexpansion. Journal of Gene Medicine, 2005, 7, 137-144.	1.4	4
101	IFN-Î ³ Negatively Modulates Self-Renewal of Repopulating Human Hemopoietic Stem Cells. Journal of Immunology, 2005, 174, 752-757.	0.4	87
102	Loss of C/EBPα cell cycle control increases myeloid progenitor proliferation and transforms the neutrophil granulocyte lineage. Journal of Experimental Medicine, 2005, 202, 85-96.	4.2	101
103	Identification of Flt3+ Lympho-Myeloid Stem Cells Lacking Erythro-Megakaryocytic Potential. Cell, 2005, 121, 295-306.	13.5	1,033
104	Biosynthetic profiles of neutrophil serine proteases in a human bone marrow-derived cellular myeloid differentiation model. Haematologica, 2005, 90, 38-44.	1.7	59
105	Bone marrow–derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nature Medicine, 2004, 10, 494-501.	15.2	981
106	P2 receptor mRNA expression profiles in human lymphocytes, monocytes and CD34+ stem and progenitor cells. BMC Immunology, 2004, 5, 16.	0.9	165
107	Enforced expression of cyclin D2 enhances the proliferative potential of myeloid progenitors, accelerates in vivo myeloid reconstitution, and promotes rescue of mice from lethal myeloablation. Blood, 2004, 104, 986-992.	0.6	22
108	Human reconstituting hematopoietic stem cells up-regulate Fas expression upon active cell cycling but remain resistant to Fas-induced suppression. Blood, 2003, 102, 118-126.	0.6	28

#	Article	IF	CITATIONS
109	Complementary Signaling through flt3 and Interleukin-7 Receptor α Is Indispensable for Fetal and Adult B Cell Genesis. Journal of Experimental Medicine, 2003, 198, 1495-1506.	4.2	157
110	Efficient Oncoretroviral Transduction of Extended Long-Term Culture-Initiating Cells and NOD/SCID Repopulating Cells: Enhanced Reconstitution with Gene-Marked Cells Through anEx VivoExpansion Approach. Human Gene Therapy, 2002, 13, 1061-1073.	1.4	6
111	Involvement and functional impairment of the CD34+CD38â^'Thy-1+ hematopoietic stem cell pool in myelodysplastic syndromes with trisomy 8. Blood, 2002, 100, 259-267.	0.6	153
112	Key Role of flt3 Ligand in Regulation of the Common Lymphoid Progenitor but Not in Maintenance of the Hematopoietic Stem Cell Pool. Immunity, 2002, 17, 463-472.	6.6	247
113	Tumor necrosis factor (TNF)–mediated activation of the p55 TNF receptor negatively regulates maintenance of cycling reconstituting human hematopoietic stem cells. Blood, 2001, 98, 1782-1791.	0.6	129
114	Self-Renewal of Multipotent Long-Term Repopulating Hematopoietic Stem Cells Is Negatively Regulated by FAS and Tumor Necrosis Factor Receptor Activation. Journal of Experimental Medicine, 2001, 194, 941-952.	4.2	94
115	Involvement of the Retinoblastoma Protein in Monocytic and Neutrophilic Lineage Commitment of Human Bone Marrow Progenitor Cells. Blood, 1999, 94, 1971-1978.	0.6	4
116	c-kit Ligand and Flt3 Ligand: Stem/Progenitor Cell Factors With Overlapping Yet Distinct Activities. Blood, 1998, 91, 1101-1134.	0.6	653
117	Transforming Growth Factor-β1 Abrogates Fas-Induced Growth Suppression and Apoptosis of Murine Bone Marrow Progenitor Cells. Blood, 1997, 90, 3395-3403.	0.6	49
118	Thrombopoietin, a Direct Stimulator of Viability and Multilineage Growth of Primitive Bone Marrow Progenitor Cells. Stem Cells, 1996, 14, 173-180.	1.4	14