Margarida Costa

List of Publications by Citations

Source: https://exaly.com/author-pdf/3047688/margarida-costa-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

13	343	11	14
papers	citations	h-index	g-index
14	393 ext. citations	8.8	3.58
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
13	Bioinspired Ultratough Hydrogel with Fast Recovery, Self-Healing, Injectability and Cytocompatibility. <i>Advanced Materials</i> , 2017 , 29, 1700759	24	118
12	Compact Saloplastic Membranes of Natural Polysaccharides for Soft Tissue Engineering. <i>Chemistry of Materials</i> , 2015 , 27, 7490-7502	9.6	47
11	Biocompatible polymeric microparticles produced by a simple biomimetic approach. <i>Langmuir</i> , 2014 , 30, 4535-9	4	26
10	Highly robust hydrogels via a fast, simple and cytocompatible dual crosslinking-based process. <i>Chemical Communications</i> , 2015 , 51, 15673-6	5.8	23
9	Preparation of Well-Dispersed Chitosan/Alginate Hollow Multilayered Microcapsules for Enhanced Cellular Internalization. <i>Molecules</i> , 2018 , 23,	4.8	21
8	Superhydrophobic Surfaces as a Tool for the Fabrication of Hierarchical Spherical Polymeric Carriers. <i>Small</i> , 2015 , 11, 3648-52	11	18
7	Oxidized Cashew Gum Scaffolds for Tissue Engineering. <i>Macromolecular Materials and Engineering</i> , 2019 , 304, 1800574	3.9	17
6	Tuneable spheroidal hydrogel particles for cell and drug encapsulation. Soft Matter, 2018, 14, 5622-562	273.6	17
5	The potential of cashew gum functionalization as building blocks for layer-by-layer films. <i>Carbohydrate Polymers</i> , 2017 , 174, 849-857	10.3	16
4	Solvent-Free Strategy Yields Size and Shape-Uniform Capsules. <i>Journal of the American Chemical Society</i> , 2017 , 139, 1057-1060	16.4	15
3	Emergence of rabbit haemorrhagic disease virus 2 in the archipelago of Madeira, Portugal (2016-2017). <i>Virus Genes</i> , 2017 , 53, 922-926	2.3	12
2	Modular Functionalization of Laminarin to Create Value-Added Naturally Derived Macromolecules. Journal of the American Chemical Society, 2020 , 142, 19689-19697	16.4	8
1	Moldable Superhydrophobic Surfaces. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600074	4.6	5