
Ignacio Melero Bermejo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3046710/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advances in mRNA-based drug discovery in cancer immunotherapy. Expert Opinion on Drug Discovery, 2022, 17, 41-53.	5.0	17
2	Three-dimensional colon cancer organoids model the response to CEA-CD3 T-cell engagers. Theranostics, 2022, 12, 1373-1387.	10.0	12
3	Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): a randomised, multicentre, open-label, phase 3 trial. Lancet Oncology, The, 2022, 23, 77-90.	10.7	526
4	Two cell line models to study multiorganic metastasis and immunotherapy in lung squamous cell carcinoma. DMM Disease Models and Mechanisms, 2022, 15, .	2.4	5
5	Tumor ENPP1 (CD203a)/Haptoglobin Axis Exploits Myeloid-Derived Suppressor Cells to Promote Post-Radiotherapy Local Recurrence in Breast Cancer. Cancer Discovery, 2022, 12, 1356-1377.	9.4	22
6	Soluble CD137 as a dynamic biomarker to monitor agonist CD137 immunotherapies. , 2022, 10, e003532.		8
7	Central Role of the Antigen-Presentation and Interferon-Î ³ Pathways in Resistance to Immune Checkpoint Blockade. Annual Review of Cancer Biology, 2022, 6, 85-102.	4.5	15
8	Novel strategies exploiting interleukin-12 in cancer immunotherapy. , 2022, 239, 108189.		35
9	Preclinical Characterization and Phase I Trial Results of a Bispecific Antibody Targeting PD-L1 and 4-1BB (GEN1046) in Patients with Advanced Refractory Solid Tumors. Cancer Discovery, 2022, 12, 1248-1265.	9.4	36
10	Revisiting Intracavitary Immunotherapy of Cancer. Clinical Cancer Research, 2022, 28, 1993-1995.	7.0	0
11	Killers on the loose: Immunotherapeutic strategies to improve NK cell-based therapy for cancer treatment. International Review of Cell and Molecular Biology, 2022, , 65-122.	3.2	4
12	Overcoming the limitations of cytokines to improve cancer therapy. International Review of Cell and Molecular Biology, 2022, , 107-141.	3.2	7
13	Phase II study SECOMBIT (sequential combo immuno and target therapy study): A subgroup analysis with a longer follow-up Journal of Clinical Oncology, 2022, 40, 9535-9535.	1.6	8
14	Perspectives in Immunotherapy: meeting report from the Immunotherapy Bridge, December 1st–2nd, 2021. Journal of Translational Medicine, 2022, 20, .	4.4	4
15	Charting roadmaps towards novel and safe synergistic immunotherapy combinations. Nature Cancer, 2022, 3, 665-680.	13.2	18
16	A Therapeutically Actionable Protumoral Axis of Cytokines Involving IL-8, TNFα, and IL-1β. Cancer Discovery, 2022, 12, 2140-2157.	9.4	16
17	Synergistic antitumor response with recombinant modified virus Ankara armed with CD40L and CD137L against peritoneal carcinomatosis. Oncolmmunology, 2022, 11, .	4.6	3
18	OX40 Agonist BMS-986178 Alone or in Combination With Nivolumab and/or Ipilimumab in Patients With Advanced Solid Tumors. Clinical Cancer Research, 2021, 27, 460-472.	7.0	48

#	Article	IF	CITATIONS
19	Revisiting anti-CTLA-4 antibodies in combination with PD-1 blockade for cancer immunotherapy. Annals of Oncology, 2021, 32, 295-297.	1.2	14
20	Nivolumab (NIVO) plus ipilimumab (IPI) combination therapy in patients (Pts) with advanced hepatocellular carcinoma (aHCC): Long-term results from CheckMate 040 Journal of Clinical Oncology, 2021, 39, 269-269.	1.6	37
21	Intratumoral virotherapy with 4-1BBL armed modified vaccinia Ankara eradicates solid tumors and promotes protective immune memory. , 2021, 9, e001586.		12
22	Mouse Models of Peritoneal Carcinomatosis to Develop Clinical Applications. Cancers, 2021, 13, 963.	3.7	12
23	An Fc-free EGFR-specific 4-1BB-agonistic Trimerbody Displays Broad Antitumor Activity in Humanized Murine Cancer Models without Toxicity. Clinical Cancer Research, 2021, 27, 3167-3177.	7.0	16
24	Paradigms on Immunotherapy Combinations with Chemotherapy. Cancer Discovery, 2021, 11, 1353-1367.	9.4	197
25	Whole exome sequencing characterization of individuals presenting extreme phenotypes of high and low risk of developing tobacco-induced lung adenocarcinoma. Translational Lung Cancer Research, 2021, 10, 1327-1337.	2.8	3
26	A Burned-Out CD8+ T-cell Subset Expands in the Tumor Microenvironment and Curbs Cancer Immunotherapy. Cancer Discovery, 2021, 11, 1700-1715.	9.4	86
27	Advances in immunotherapy for hepatocellular carcinoma. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 525-543.	17.8	609
28	MONEO: A phase II study of avelumab (Av) plus FLOT in the peri-operative treatment for patients (pts) with resectable gastric or gastroesophageal junction cancer (GC) Journal of Clinical Oncology, 2021, 39, TPS4155-TPS4155.	1.6	2
29	A phase I, first-in-human clinical trial of the GDF-15 neutralizing antibody CTL-002 in subjects with advanced-stage solid tumors (ACRONYM: GDFATHER) Journal of Clinical Oncology, 2021, 39, TPS2658-TPS2658.	1.6	4
30	DNGR-1 limits Flt3L-mediated antitumor immunity by restraining tumor-infiltrating type I conventional dendritic cells. , 2021, 9, e002054.		22
31	Intratumoural administration and tumour tissue targeting of cancer immunotherapies. Nature Reviews Clinical Oncology, 2021, 18, 558-576.	27.6	202
32	Differential Interleukinâ€8 thresholds for chemotaxis and netosis in human neutrophils. European Journal of Immunology, 2021, 51, 2274-2280.	2.9	32
33	Characterizing the Invasive Tumor Front of Aggressive Uterine Adenocarcinoma and Leiomyosarcoma. Frontiers in Cell and Developmental Biology, 2021, 9, 670185.	3.7	5
34	Antitumor efficacy and reduced toxicity using an anti-CD137 Probody therapeutic. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	24
35	Statins act as transient type I interferon inhibitors to enable the antitumor activity of modified vaccinia Ankara viral vectors. , 2021, 9, e001587.		10
36	MO24-1 Phase I/IIa trial evaluating safety and clinical activity of DuoBody®-PD-L1×4-1BB (GEN1046) in advanced solid tumors. Annals of Oncology, 2021, 32, S313.	1.2	1

Ignacio Melero Bermejo

#	Article	IF	CITATIONS
37	Consolidating Radiotherapy with Immunotherapy. Clinical Cancer Research, 2021, 27, 5443-5445.	7.0	4
38	Heterogenous presence of neutrophil extracellular traps in human solid tumours is partially dependent on <scp>IL</scp> â€8. Journal of Pathology, 2021, 255, 190-201.	4.5	49
39	Harmful cytokines in cancer immunology and immunotherapy: biomarkers and targets?. Annals of Oncology, 2021, 32, 1311-1313.	1.2	3
40	CD137 Costimulation Counteracts TGFβ Inhibition of NK-cell Antitumor Function. Cancer Immunology Research, 2021, 9, 1476-1490.	3.4	15
41	CheckMate 040 cohort 5: A phase I/II study of nivolumab in patients with advanced hepatocellular carcinoma and Child-Pugh B cirrhosis. Journal of Hepatology, 2021, 75, 600-609.	3.7	127
42	Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of hepatocellular carcinoma. , 2021, 9, e002794.		43
43	Firefighters for the Wrong Type of Inflammation in Tumors. Cancer Discovery, 2021, 11, 2372-2374.	9.4	3
44	IL8, Neutrophils, and NETs in a Collusion against Cancer Immunity and Immunotherapy. Clinical Cancer Research, 2021, 27, 2383-2393.	7.0	108
45	Identification of LZTFL1 as a candidate effector gene at a COVID-19 risk locus. Nature Genetics, 2021, 53, 1606-1615.	21.4	93
46	Epitope spreading driven by the joint action of CART cells and pharmacological STING stimulation counteracts tumor escape via antigen-loss variants. , 2021, 9, e003351.		14
47	Intratumoral co-injection of the poly I:C-derivative BO-112 and a STING agonist synergize to achieve local and distant anti-tumor efficacy. , 2021, 9, e002953.		23
48	CD137 (4-1BB) costimulation of CD8+ T cells is more potent when provided in cis than in trans with respect to CD3-TCR stimulation. Nature Communications, 2021, 12, 7296.	12.8	22
49	Dendritic cells in cancer immunology and immunotherapy. Nature Reviews Immunology, 2020, 20, 7-24.	22.7	1,401
50	Designing clinical studies for biomarker discovery: The Design criteria. , 2020, , 441-466.		0
51	Immunological impact of cell death signaling driven by radiation on the tumor microenvironment. Nature Immunology, 2020, 21, 120-134.	14.5	218
52	Repurposing the yellow fever vaccine for intratumoral immunotherapy. EMBO Molecular Medicine, 2020, 12, e10375.	6.9	28
53	14P Comparison of the predictive power of survival of the Royal Marsden Score, the GRIM score and the LIPI score in phase I trial patients. Annals of Oncology, 2020, 31, S4.	1.2	0
54	Interleukin-12 Message in a Bottle. Clinical Cancer Research, 2020, 26, 6080-6082.	7.0	8

#	Article	IF	CITATIONS
55	Intratumoral nanoplexed poly I:C BO-112 in combination with systemic anti–PD-1 for patients with anti–PD-1–refractory tumors. Science Translational Medicine, 2020, 12, .	12.4	51
56	Efficacy and Safety of Nivolumab Plus Ipilimumab in Patients With Advanced Hepatocellular Carcinoma Previously Treated With Sorafenib. JAMA Oncology, 2020, 6, e204564.	7.1	746
57	Association of inflammatory biomarkers with clinical outcomes in nivolumab-treated patients with advanced hepatocellular carcinoma. Journal of Hepatology, 2020, 73, 1460-1469.	3.7	254
58	Cancer immunotherapy resistance based on immune checkpoints inhibitors: Targets, biomarkers, and remedies. Drug Resistance Updates, 2020, 53, 100718.	14.4	103
59	LBA45 First report of efficacy and safety from the phase II study SECOMBIT (SEquential COMBo Immuno) Tj ETQo	1 _{1.2} 0.784	-314 rgBT /0
60	1025MO First-in-human (FIH) phase I study of RO7122290 (RO), a novel FAP-targeted 4-1BB agonist, administered as single agent and in combination with atezolizumab (ATZ) to patients with advanced solid tumours. Annals of Oncology, 2020, 31, S707.	1.2	14
61	Growth/Differentiation Factor-15 (GDF-15): From Biomarker to Novel Targetable Immune Checkpoint. Frontiers in Immunology, 2020, 11, 951.	4.8	221
62	Elevated serum interleukin-8 is associated with enhanced intratumor neutrophils and reduced clinical benefit of immune-checkpoint inhibitors. Nature Medicine, 2020, 26, 688-692.	30.7	296
63	Diverse immune environments in human lung tuberculosis granulomas assessed by quantitative multiplexed immunofluorescence. Modern Pathology, 2020, 33, 2507-2519.	5.5	32
64	Scavenger Receptor Class B Type I is Required for 25â€Hydroxycholecalciferol Cellular Uptake and Signaling in Myeloid Cells. Molecular Nutrition and Food Research, 2020, 64, e1901213.	3.3	1
65	Quantitative and qualitative impairments in dendritic cell subsets of patients with ovarian or prostate cancer. European Journal of Cancer, 2020, 135, 173-182.	2.8	32
66	Premortem Tumor Stress in Radioimmunotherapy. Trends in Cancer, 2020, 6, 173-174.	7.4	1
67	Rapid isolation and enrichment of mouse NK cells for experimental purposes. Methods in Enzymology, 2020, 631, 257-275.	1.0	4
68	CXCR1 and CXCR2 Chemokine Receptor Agonists Produced by Tumors Induce Neutrophil Extracellular Traps that Interfere with Immune Cytotoxicity. Immunity, 2020, 52, 856-871.e8.	14.3	387
69	Cellular cytotoxicity is a form of immunogenic cell death. , 2020, 8, e000325.		61
70	Repurposing infectious disease vaccines for intratumoral immunotherapy. , 2020, 8, e000443.		20
71	Human CD8 T cells are susceptible to TNF-mediated activation-induced cell death. Theranostics, 2020, 10, 4481-4489.	10.0	24
72	Prognostic value of macrophage polarization markers in epithelial neoplasms and melanoma. A systematic review and meta-analysis. Modern Pathology, 2020, 33, 1458-1465.	5.5	39

#	Article	IF	CITATIONS
73	Engineering bionic T cells: signal 1, signal 2, signal 3, reprogramming and the removal of inhibitory mechanisms. Cellular and Molecular Immunology, 2020, 17, 576-586.	10.5	12
74	Endoscopical and pathological dissociation in severe colitis induced by immune-checkpoint inhibitors. Oncolmmunology, 2020, 9, 1760676.	4.6	4
75	412â€First-in-human phase I/IIa trial to evaluate the safety and initial clinical activity of DuoBody®-PD-L1×4–1BB (GEN1046) in patients with advanced solid tumors. , 2020, , .		5
76	Abstract CT302: Phase Ia/Ib dose-escalation study of the anti-TIGIT antibody tiragolumab as a single agent and in combination with atezolizumab in patients with advanced solid tumors. Cancer Research, 2020, 80, CT302-CT302.	0.9	25
77	PROCLAIM-CX-072: Analysis of patients with advanced solid tumors receiving long-term treatment with CX-072, a PD-L1 probody therapeutic, as a single agent or in combination with ipilimumab Journal of Clinical Oncology, 2020, 38, 3005-3005.	1.6	1
78	Abstract CT301: A phase Ib study to evaluate RO7198457, an individualized Neoantigen Specific immunoTherapy (iNeST), in combination with atezolizumab in patients with locally advanced or metastatic solid tumors. Cancer Research, 2020, 80, CT301-CT301.	0.9	31
79	Exploiting TCR Recognition of Shared Hotspot Oncogene-encoded Neoantigens. Clinical Cancer Research, 2020, 26, 1203-1204.	7.0	1
80	4-1BB (CD137) in anticancer chimeras. Journal of Experimental Medicine, 2020, 217, .	8.5	1
81	755â€CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity. , 2020, 8, A803-A803.		4
82	315â€W0180 novel anti-VISTA antibody: Rationale for target patient population and first-in-human trial design in monotherapy and in combination with anti-PD1 antibody. , 2020, , .		2
83	370â€Pharmacodynamic assessment of a novel FAP-targeted 4–1BB agonist, administered as single agent and in combination with atezolizumab to patients with advanced solid tumors. , 2020, , .		1
84	394â€Interleukin-8–neutralizing monoclonal antibody BMS-986253 plus nivolumab (NIVO) in biomarker-enriched, primarily anti–PD-(L)1–experienced patients with advanced cancer: initial phase 1 results. , 2020, , .		3
85	286â€Tumor targeting and tissue biodistribution of RO7122290, a novel FAP-targeted 4–1BB (CD137) agonist, in patients with advanced solid tumors, using [89Zr]-RO7122290 as a PET tracer. , 2020, , .		0
86	Immune Desertic Landscapes in Hepatocellular Carcinoma Shaped by β-Catenin Activation. Cancer Discovery, 2019, 9, 1003-1005.	9.4	23
87	Vaccination for Pancreatic Ductal Adenocarcinoma: A Hard Nut to Crack. Clinical Cancer Research, 2019, 25, 5435-5437.	7.0	5
88	An Integrative Approach to Inform Optimal Administration of OX40 Agonist Antibodies in Patients with Advanced Solid Tumors. Clinical Cancer Research, 2019, 25, 6709-6720.	7.0	32
89	Biomarkers and clinical outcomes in nivolumab-treated patients with advanced hepatocellular carcinoma in CheckMate 040. Annals of Oncology, 2019, 30, vi106.	1.2	3
90	Short-Term Local Expression of a PD-L1 Blocking Antibody from a Self-Replicating RNA Vector Induces Potent Antitumor Responses. Molecular Therapy, 2019, 27, 1892-1905.	8.2	28

#	Article	IF	CITATIONS
91	TGFÎ ² Blockade Enhances Radiotherapy Abscopal Efficacy Effects in Combination with Anti-PD1 and Anti-CD137 Immunostimulatory Monoclonal Antibodies. Molecular Cancer Therapeutics, 2019, 18, 621-631.	4.1	68
92	Twists and turns to translating 4-1BB cancer immunotherapy. Science Translational Medicine, 2019, 11, .	12.4	31
93	FRI-499-Efficacy and hepatic safety of nivolumab treatment in patients with Child-Pugh B disease and advanced hepatocellular carcinoma in CheckMate 040. Journal of Hepatology, 2019, 70, e619.	3.7	4
94	Daratumumab in combination with urelumab to potentiate anti-myeloma activity in lymphocyte-deficient mice reconstituted with human NK cells. OncoImmunology, 2019, 8, e1599636.	4.6	20
95	The clinical application of cancer immunotherapy based on naturally circulating dendritic cells. , 2019, 7, 109.		129
96	Expression Analysis and Significance of PD-1, LAG-3, and TIM-3 in Human Non–Small Cell Lung Cancer Using Spatially Resolved and Multiparametric Single-Cell Analysis. Clinical Cancer Research, 2019, 25, 4663-4673.	7.0	210
97	Immunotherapeutic effects of intratumoral nanoplexed poly I:C. , 2019, 7, 116.		91
98	Prophylactic TNF blockade uncouples efficacy and toxicity in dual CTLA-4 and PD-1 immunotherapy. Nature, 2019, 569, 428-432.	27.8	313
99	Identification of mutations associated with acquired resistance to sunitinib in renal cell cancer. International Journal of Cancer, 2019, 145, 1991-2001.	5.1	32
100	Immunotherapy in Non–Small Cell Lung Cancer: Facts and Hopes. Clinical Cancer Research, 2019, 25, 4592-4602.	7.0	447
101	Effective cancer immunotherapy by natural mouse conventional type-1 dendritic cells bearing dead tumor antigen. , 2019, 7, 100.		89
102	Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nature Medicine, 2019, 25, 470-476.	30.7	459
103	New emerging targets in cancer immunotherapy: CD137/4-1BB costimulatory axis. ESMO Open, 2019, 4, e000733.	4.5	80
104	Metabolic Consequences of T-cell Costimulation in Anticancer Immunity. Cancer Immunology Research, 2019, 7, 1564-1569.	3.4	48
105	Intratumor Adoptive Transfer of IL-12 mRNA Transiently Engineered Antitumor CD8+ T Cells. Cancer Cell, 2019, 36, 613-629.e7.	16.8	99
106	Combination of intratumoural double-stranded RNA (dsRNA) BO-112 with systemic anti-PD-1 in patients with anti-PD-1 refractory cancer. Annals of Oncology, 2019, 30, xi37-xi38.	1.2	2
107	Immune mechanisms mediating abscopal effects in radioimmunotherapy. , 2019, 196, 195-203.		52
108	Fibrinogen-like Protein 1 Is a Major Immune Inhibitory Ligand of LAG-3. Cell, 2019, 176, 334-347.e12.	28.9	553

#	Article	IF	CITATIONS
109	Cytokines in clinical cancer immunotherapy. British Journal of Cancer, 2019, 120, 6-15.	6.4	720
110	Safety and Tolerability of Immune Checkpoint Inhibitors (PD-1 and PD-L1) in Cancer. Drug Safety, 2019, 42, 281-294.	3.2	69
111	For Whom the Cell Tolls? Intratumoral Treatment Links Innate and Adaptive Immunity. Clinical Cancer Research, 2019, 25, 1127-1129.	7.0	4
112	Nivolumab (NIVO) + ipilimumab (IPI) combination therapy in patients (pts) with advanced hepatocellular carcinoma (aHCC): Results from CheckMate 040 Journal of Clinical Oncology, 2019, 37, 4012-4012.	1.6	178
113	Checkmate-040: Nivolumab (NIVO) in patients (pts) with advanced hepatocellular carcinoma (aHCC) and Child-Pugh B (CPB) status Journal of Clinical Oncology, 2019, 37, 327-327.	1.6	80
114	Impact of prophylactic TNF blockade in the dual PD-1 and CTLA-4 immunotherapy efficacy and toxicity. Cell Stress, 2019, 3, 236-239.	3.2	17
115	Abstract IA11: The immunotherapy faces of Interleukin-8 and CD137. , 2019, , .		0
116	Whole exome sequencing of germline DNA of individuals presenting extreme phenotypes of high and low risk to develop tobacco-induced lung adenocarcinoma (LUAD) according to KRAS status Journal of Clinical Oncology, 2019, 37, 1540-1540.	1.6	1
117	Abstract 1474: Repurposing the yellow fever vaccine for intratumoral immunotherapy. , 2019, , .		0
118	Abstract 2675: Assessment of inflammation biomarkers in relation to clinical outcomes in nivolumab-treated patients with advanced hepatocellular carcinoma in CheckMate 040. Cancer Research, 2019, 79, 2675-2675.	0.9	6
119	Abstract 2331: Intratumor adoptive transfer of IL-12 mRNA transiently engineered anti-tumor CD8+ T cells. , 2019, , .		0
120	Introducing a New Series: Immunotherapy Facts and Hopes. Clinical Cancer Research, 2018, 24, 1773-1774.	7.0	4
121	Mitochondrial Morphological and Functional Reprogramming Following CD137 (4-1BB) Costimulation. Cancer Immunology Research, 2018, 6, 798-811.	3.4	62
122	Anti-PD1 associated fulminant myocarditis after a single pembrolizumab dose: the role of occult pre-existing autoimmunity. Haematologica, 2018, 103, e318-e321.	3.5	50
123	Radiation effects on antitumor immune responses: current perspectives and challenges. Therapeutic Advances in Medical Oncology, 2018, 10, 175883401774257.	3.2	185
124	Co-stimulation Agonists via CD137, OX40, GITR, and CD27 for Immunotherapy of Cancer. , 2018, , 429-446.		0
125	External validation of the Gustave Roussy immune score (GRIm score) in an unselected cohort of patients treated at the Clinica Universidad de Navarra. Annals of Oncology, 2018, 29, iii26.	1.2	0
126	Revisiting Interleukin-12 as a Cancer Immunotherapy Agent. Clinical Cancer Research, 2018, 24, 2716-2718.	7.0	69

#	Article	IF	CITATIONS
127	Combined immunotherapy encompassing intratumoral poly-ICLC, dendritic-cell vaccination and radiotherapy in advanced cancer patients. Annals of Oncology, 2018, 29, 1312-1319.	1.2	106
128	Deubiquitinases A20 and CYLD modulate costimulatory signaling via CD137 (4–1BB). Oncolmmunology, 2018, 7, e1368605.	4.6	7
129	Enhancement of antibody-dependent cellular cytotoxicity of cetuximab by a chimeric protein encompassing interleukin-15. Oncolmmunology, 2018, 7, e1393597.	4.6	20
130	Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies. Blood, 2018, 131, 49-57.	1.4	336
131	CD137 (4-1BB) Costimulation Modifies DNA Methylation in CD8+ T Cell–Relevant Genes. Cancer Immunology Research, 2018, 6, 69-78.	3.4	34
132	Immunotherapy of Hepatocellular Carcinoma: Facts and Hopes. Clinical Cancer Research, 2018, 24, 1518-1524.	7.0	194
133	Clinical activity, safety, and PK/PD from a phase I study of RO6874281, a fibroblast activation protein (FAP) targeted interleukin-2 variant (IL-2v). Annals of Oncology, 2018, 29, viii134-viii135.	1.2	15
134	Previous immunotherapy treatments may improve tumor responses with subsequent chemotherapy regimens. Annals of Oncology, 2018, 29, viii435-viii436.	1.2	0
135	Characterization through whole exome sequencing of individuals presenting extreme phenotypes of high and low risk to develop tobacco-induced non-small lung cancer (NSCLC). Annals of Oncology, 2018, 29, viii651-viii652.	1.2	0
136	Neoadjuvant immunotherapy in non-small cell lung cancer: the sooner the better?. Translational Lung Cancer Research, 2018, 7, S356-S357.	2.8	8
137	A tumor-targeted trimeric 4-1BB-agonistic antibody induces potent anti-tumor immunity without systemic toxicity. Nature Communications, 2018, 9, 4809.	12.8	116
138	CD137 (4-1BB) Signalosome: Complexity Is a Matter of TRAFs. Frontiers in Immunology, 2018, 9, 2618.	4.8	86
139	Intratumoral BO-112, a double-stranded RNA (dsRNA), alone and in combination with systemic anti-PD-1 in solid tumors. Annals of Oncology, 2018, 29, viii732.	1.2	8
140	Immunodivergence in Metastatic Colorectal Cancer. Cancer Cell, 2018, 34, 876-878.	16.8	25
141	ICAM-1-LFA-1 Dependent CD8+ T-Lymphocyte Aggregation in Tumor Tissue Prevents Recirculation to Draining Lymph Nodes. Frontiers in Immunology, 2018, 9, 2084.	4.8	31
142	A randomized phase II clinical trial of dendritic cell vaccination following complete resection of colon cancer liver metastasis. , 2018, 6, 96.		40
143	Starting the fight in the tumor: expert recommendations for the development of human intratumoral immunotherapy (HIT-IT). Annals of Oncology, 2018, 29, 2163-2174.	1.2	145
144	Intratumoral Immunotherapy with XCL1 and sFlt3L Encoded in Recombinant Semliki Forest Virus–Derived Vectors Fosters Dendritic Cell–Mediated T-cell Cross-Priming. Cancer Research, 2018, 78, 6643-6654.	0.9	60

#	Article	IF	CITATIONS
145	International Symposium: Trailblazing in Cancer Immunotherapy, October 29–31, 2017, Pamplona, Spain. Cancer Immunology, Immunotherapy, 2018, 67, 1809-1813.	4.2	0
146	An RNA toolbox for cancer immunotherapy. Nature Reviews Drug Discovery, 2018, 17, 751-767.	46.4	171
147	Chemotherapy after immunotherapy failure in patients with advanced gastrointestinal tumors. Annals of Oncology, 2018, 29, vi21-vi22.	1.2	2
148	Genomic characterization of individuals presenting extreme phenotypes of high and low risk to develop tobacco-induced lung cancer. Cancer Medicine, 2018, 7, 3474-3483.	2.8	11
149	Hepatic safety and biomarker assessments in sorafenib-experienced patients with advanced hepatocellular carcinoma treated with nivolumab in the CheckMate-040 study. Journal of Hepatology, 2018, 68, S16.	3.7	11
150	Epistatic Oncogenic Interactions Determine Cancer Susceptibility to Immunotherapy. Cancer Discovery, 2018, 8, 794-796.	9.4	6
151	Perspectives in immunotherapy: meeting report from the Immunotherapy Bridge (29-30 November, 2017,) Tj ET(Qq1 1 0.78	34314 rgBT /(
152	Immunological Mechanisms Responsible for Radiation-Induced Abscopal Effect. Trends in Immunology, 2018, 39, 644-655.	6.8	312
153	Abstract CT017: Combined immunotherapy encompassing intratumoral poly-ICLC, dendritic-cell vaccination and radiotherapy in advanced cancer patients. , 2018, , .		1
154	Serum interleukin 8 (IL-8) may serve as a biomarker of response to immuno-oncology (I-O) therapy Journal of Clinical Oncology, 2018, 36, 3025-3025.	1.6	6
155	Safety, PK/PD, and anti-tumor activity of RO6874281, an engineered variant of interleukin-2 (IL-2v) targeted to tumor-associated fibroblasts via binding to fibroblast activation protein (FAP) Journal of Clinical Oncology, 2018, 36, e15155-e15155.	1.6	33
156	Phase 1b/2 study of nivolumab in combination with an anti–IL-8 monoclonal antibody, BMS-986253, in a biomarker-enriched population of patients with advanced cancer Journal of Clinical Oncology, 2018, 36, TPS3109-TPS3109.	1.6	4
157	Impact of antitumor activity on survival outcomes, and nonconventional benefit, with nivolumab (NIVO) in patients with advanced hepatocellular carcinoma (aHCC): Subanalyses of CheckMate-040 Journal of Clinical Oncology, 2018, 36, 475-475.	1.6	39
158	Abstract LB-151: Prophylactic TNFÎ $_{\pm}$ blockade unplugs toxicity and efficacy in immunotherapy anti-PD-1 + anti-CTLA-4 combinations. , 2018, , .		0
159	Abstract A09: Impaired HLA Class I antigen processing and presentation as a mechanism of acquired Rrsistance to immune checkpoint inhibitors in lung cancer. , 2018, , .		0
160	Strategies to design clinical studies to identify predictive biomarkers in cancer research. Cancer Treatment Reviews, 2017, 53, 79-97.	7.7	80
161	Antibodyâ€dependent cell cytotoxicity: immunotherapy strategies enhancing effector NK cells. Immunology and Cell Biology, 2017, 95, 347-355.	2.3	160
162	T Cell Migration from Inflamed Skin to Draining Lymph Nodes Requires Intralymphatic Crawling Supported by ICAM-1/LFA-1 Interactions. Cell Reports, 2017, 18, 857-865.	6.4	96

#	Article	IF	CITATIONS
163	Targeting NK-cell checkpoints for cancer immunotherapy. Current Opinion in Immunology, 2017, 45, 73-81.	5.5	158
164	CD69 is a direct HIF-1α target gene in hypoxia as a mechanism enhancing expression on tumor-infiltrating T lymphocytes. Oncolmmunology, 2017, 6, e1283468.	4.6	27
165	Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet, The, 2017, 389, 2492-2502.	13.7	3,224
166	Cellular immunotherapies for cancer. Oncolmmunology, 2017, 6, e1306619.	4.6	17
167	Nivolumab in sorafenib-experienced patients with advanced hepatocellular carcinoma (HCC) with or without chronic viral hepatitis: CheckMate 040 study. Journal of Hepatology, 2017, 66, S34-S35.	3.7	6
168	Changes in serum interleukin-8 (IL-8) levels reflect and predict response to anti-PD-1 treatment in melanoma and non-small-cell lung cancer patients. Annals of Oncology, 2017, 28, 1988-1995.	1.2	326
169	Intratumoral Delivery of Immunotherapy—Act Locally, Think Globally. Journal of Immunology, 2017, 198, 31-39.	0.8	171
170	Impaired HLA Class I Antigen Processing and Presentation as a Mechanism of Acquired Resistance to Immune Checkpoint Inhibitors in Lung Cancer. Cancer Discovery, 2017, 7, 1420-1435.	9.4	507
171	Antigen cross-presentation and T-cell cross-priming in cancer immunology and immunotherapy. Annals of Oncology, 2017, 28, xii44-xii55.	1.2	170
172	Brachytherapy attains abscopal effects when combined with immunostimulatory monoclonal antibodies. Brachytherapy, 2017, 16, 1246-1251.	0.5	32
173	Interleukin-8 in cancer pathogenesis, treatment and follow-up. Cancer Treatment Reviews, 2017, 60, 24-31.	7.7	262
174	Predictors of responses to immune checkpoint blockade in advanced melanoma. Nature Communications, 2017, 8, 592.	12.8	166
175	Enhanced anti-tumour immunity requires the interplay between resident and circulating memory CD8+ T cells. Nature Communications, 2017, 8, 16073.	12.8	222
176	Novel carcinoembryonic antigen T-cell bispecific (CEA-TCB) antibody: Preliminary clinical data as a single agent and in combination with atezolizumab in patients with metastatic colorectal cancer (mCRC). Annals of Oncology, 2017, 28, iii151.	1.2	18
177	Anti-CD137 and PD-1/PD-L1 Antibodies En Route toward Clinical Synergy. Clinical Cancer Research, 2017, 23, 5326-5328.	7.0	33
178	Efficacy and safety of nivolumab in patients with advanced hepatocellular carcinoma analyzed by patient age: A sub-analysis of the CheckMate 040 study. Annals of Oncology, 2017, 28, iii139.	1.2	2
179	Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule Are Induced by Ionizing Radiation on Lymphatic Endothelium. International Journal of Radiation Oncology Biology Physics, 2017, 97, 389-400.	0.8	55
180	Results from an Integrated Safety Analysis of Urelumab, an Agonist Anti-CD137 Monoclonal Antibody. Clinical Cancer Research, 2017, 23, 1929-1936.	7.0	290

#	Article	IF	CITATIONS
181	Cancer immunotherapy full speed ahead. Annals of Oncology, 2017, 28, xii1-xii2.	1.2	6
182	Combined immunotherapy encompassing intratumoral polyICLC, dendritic-cell vaccination and radiotherapy in advanced cancer patients. Annals of Oncology, 2017, 28, xi14.	1.2	0
183	Safety and immunobiological activity of intratumoral (IT) double-stranded RNA (dsRNA) BO-112 in solid malignancies: First in human clinical trial. Annals of Oncology, 2017, 28, v612.	1.2	2
184	Pharmacokinetics (PK) and pharmacodynamics (PD) of a novel carcinoembryonic antigen (CEA) T-cell bispecific antibody (CEA-CD3 TCB) for the treatment of CEA-positive solid tumors. Annals of Oncology, 2017, 28, v28.	1.2	4
185	In patients with advanced non-small cell lung cancer (NSCLC) LAG-3 is expressed on activated TILs and predicts resistance to PD-1 axis blockers. Annals of Oncology, 2017, 28, xi5.	1.2	2
186	Pharmacokinetics (PK) and pharmacodynamics (PD) of a novel carcinoembryonic antigen (CEA) T-cell bispecific antibody (CEA CD3 TCB) for the treatment of CEA-expressing solid tumors Journal of Clinical Oncology, 2017, 35, 2549-2549.	1.6	4
187	Phase Ia and Ib studies of the novel carcinoembryonic antigen (CEA) T-cell bispecific (CEA CD3 TCB) antibody as a single agent and in combination with atezolizumab: Preliminary efficacy and safety in patients with metastatic colorectal cancer (mCRC) Journal of Clinical Oncology, 2017, 35, 3002-3002.	1.6	129
188	First-in-human clinical trial with intratumoral BO-112 in solid malignancies: A novel immunotherapy based in double-stranded RNA (dsRNA) Journal of Clinical Oncology, 2017, 35, 3082-3082.	1.6	3
189	Nivolumab (nivo) in sorafenib (sor)-naive and -experienced pts with advanced hepatocellular carcinoma (HCC): CheckMate 040 study Journal of Clinical Oncology, 2017, 35, 4013-4013.	1.6	76
190	Initial efficacy of anti-lymphocyte activation gene-3 (anti–LAG-3; BMS-986016) in combination with nivolumab (nivo) in pts with melanoma (MEL) previously treated with anti–PD-1/PD-L1 therapy Journal of Clinical Oncology, 2017, 35, 9520-9520.	1.6	188
191	SECOMBIT (sequential combo immuno and target therapy study): A three arms prospective, randomized phase II study to evaluate the best sequential approach with combo immunotherapy [ipilimumab (I) /nivolumab (N)] and combo target therapy [encorafenib (E)/binimetinib (B)] in patients with metastatic melanoma and BRAF mutation Journal of Clinical Oncology, 2017, 35, TPS9598-TPS9598.	1.6	5
192	Nivolumab dose escalation and expansion in patients with advanced hepatocellular carcinoma (HCC): The CheckMate 040 study Journal of Clinical Oncology, 2017, 35, 226-226.	1.6	19
193	Abstract 612: Methylation changes in DNA of CD8 T cells following CD137 costimulation. , 2017, , .		0
194	Abstract 639: Morphological changes in mitochondria induced by CD137 (4-1BB) co-stimulation on CD8 T cells. , 2017, , .		1
195	Making the Most of Cancer Surgery with Neoadjuvant Immunotherapy. Cancer Discovery, 2016, 6, 1312-1314.	9.4	41
196	Changes in serum IL8 levels reflect and predict response to anti-PD-1 treatment in melanoma and non-small cell lung cancer patients. Annals of Oncology, 2016, 27, vi359.	1.2	4
197	Cancer Treatment with Anti-PD-1/PD-L1 Agents: Is PD-L1 Expression a Biomarker for Patient Selection?. Drugs, 2016, 76, 925-945.	10.9	123
198	Emerging Opportunities and Challenges in Cancer Immunotherapy. Clinical Cancer Research, 2016, 22, 1845-1855.	7.0	242

#	Article	IF	CITATIONS
199	Immunostimulatory Monoclonal Antibodies and Immunomodulation: Harvesting the Crop. Cancer Research, 2016, 76, 2863-2867.	0.9	4
200	Deciphering CD137 (4â€1BB) signaling in T ell costimulation for translation into successful cancer immunotherapy. European Journal of Immunology, 2016, 46, 513-522.	2.9	104
201	Abscopal Effects of Radiotherapy Are Enhanced by Combined Immunostimulatory mAbs and Are Dependent on CD8 T Cells and Crosspriming. Cancer Research, 2016, 76, 5994-6005.	0.9	191
202	Innate immune mediators in cancer: between defense and resistance. Immunological Reviews, 2016, 274, 290-306.	6.0	104
203	Safety and preliminary efficacy of nivolumab (nivo) in patients (pts) with advanced hepatocellular carcinoma (aHCC): Interim analysis of the phase 1/2 CheckMate-040 study. Annals of Oncology, 2016, 27, vi209.	1.2	2
204	Perspectives in immunotherapy: meeting report from the "Immunotherapy Bridgeâ€, Napoli, December 5th 2015. , 2016, 4, .		0
205	Immunotherapy of Cancer Visualized by Live Microscopy: Seeing Is Believing. Clinical Cancer Research, 2016, 22, 4277-4279.	7.0	2
206	Immunodynamics: a cancer immunotherapy trials network review of immune monitoring in immuno-oncology clinical trials. , 2016, 4, 15.		67
207	Hypoxia-induced soluble CD137 in malignant cells blocks CD137L-costimulation as an immune escape mechanism. Oncolmmunology, 2016, 5, e1062967.	4.6	52
208	Defining the optimal murine models to investigate immune checkpoint blockers and their combination with other immunotherapies. Annals of Oncology, 2016, 27, 1190-1198.	1.2	153
209	Cancer Immunosurveillance Caught in the Act. Immunity, 2016, 44, 525-526.	14.3	6
210	Anti-CD137 monoclonal antibodies and adoptive T cell therapy: a perfect marriage?. Cancer Immunology, Immunotherapy, 2016, 65, 493-497.	4.2	15
211	Successful Immunotherapy against a Transplantable Mouse Squamous Lung Carcinoma with Anti–PD-1 and Anti-CD137 Monoclonal Antibodies. Journal of Thoracic Oncology, 2016, 11, 524-536.	1.1	48
212	Tumor-Produced Interleukin-8 Attracts Human Myeloid-Derived Suppressor Cells and Elicits Extrusion of Neutrophil Extracellular Traps (NETs). Clinical Cancer Research, 2016, 22, 3924-3936.	7.0	306
213	Cancer Immunotherapy with Immunomodulatory Anti-CD137 and Anti–PD-1 Monoclonal Antibodies Requires BATF3-Dependent Dendritic Cells. Cancer Discovery, 2016, 6, 71-79.	9.4	356
214	Abstract 4908: Cancer immunotherapy with immunomodulatory anti-CD137 and anti-PD-1 monoclonal antibodies requires Batf3-dependent dendritic cells. , 2016, , .		4
215	Phase I/II safety and antitumor activity of nivolumab (nivo) in patients (pts) with advanced hepatocellular carcinoma (HCC): Interim analysis of the CheckMate-040 dose escalation study Journal of Clinical Oncology, 2016, 34, 4012-4012.	1.6	23
216	Safety and antitumor activity of nivolumab (nivo) in patients (pts) with advanced hepatocellular carcinoma (HCC): Interim analysis of dose-expansion cohorts from the phase 1/2 CheckMate-040 study Journal of Clinical Oncology, 2016, 34, 4078-4078.	1.6	30

#	Article	IF	CITATIONS
217	EORTC-ETOP randomized, phase 3 trial with anti-PD-1 monoclonal antibody pembrolizumab versus placebo for patients with early stage non-small cell lung cancer (NSCLC) after resection and standard adjuvant chemotherapy: PEARLS (NCT02504372) Journal of Clinical Oncology, 2016, 34, TPS8571-TPS8571.	1.6	7
218	Abstract 4015: Exposure of lymphatic endothelial cells to ionizing radiation increases the surface expression levels of integrin ligands. , 2016, , .		0
219	Abstract 4012: Improving radiotherapy abscopal effects with anti-PD1 and anti-CD137-based immunotherapy. , 2016, , .		0
220	P1318 : Phase I dose escalation study of the safety, immunoregulatory activity, pharmacokinetics, and preliminary antitumor activity of nivolumab in advanced hepatocellular carcinoma in patients with or without chronic viral hepatitis. Journal of Hepatology, 2015, 62, S849.	3.7	2
221	505 Clinical evidence of intra-tumoral immune activation and tumor targeting with RC, a CEA-targeted engineered IL-2 immunocytokine. European Journal of Cancer, 2015, 51, S104-S105.	2.8	0
222	Melanoma: From Incurable Beast to a Curable Bet. The Success of Immunotherapy. Frontiers in Oncology, 2015, 5, 152.	2.8	26
223	Consensus nomenclature for CD8 ⁺ T cell phenotypes in cancer. Oncolmmunology, 2015, 4, e998538.	4.6	119
224	Focusing and sustaining the antitumor CTL effector killer response by agonist anti-CD137 mAb. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7551-7556.	7.1	92
225	Helper-dependent adenovirus achieve more efficient and persistent liver transgene expression in non-human primates under immunosuppression. Gene Therapy, 2015, 22, 856-865.	4.5	14
226	Enhancing T Cell Performance Against Cancer in Combination Treatment Strategies. Cancer Drug Discovery and Development, 2015, , 245-258.	0.4	0
227	Immune Response Regulation in the Tumor Microenvironment by Hypoxia. Seminars in Oncology, 2015, 42, 378-386.	2.2	121
228	"Cancer Bio-Immunotherapy in Sienaâ€: Eleventh Meeting of the Network Italiano per la Bioterapia dei Tumori (NIBIT), Siena, Italy, October 17–19, 2013. Cancer Immunology, Immunotherapy, 2015, 64, 131-135.	4.2	0
229	Nivolumab and Urelumab Enhance Antitumor Activity of Human T Lymphocytes Engrafted in Rag2â^'/â^'IL2Rγnull Immunodeficient Mice. Cancer Research, 2015, 75, 3466-3478.	0.9	137
230	Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nature Reviews Cancer, 2015, 15, 457-472.	28.4	576
231	PD-L1/PD-1 presence in the tumor microenvironment and activity of PD-1 blockade in multiple myeloma. Leukemia, 2015, 29, 2110-2113.	7.2	170
232	PD-L1 expression as a potential predictive biomarker. Lancet Oncology, The, 2015, 16, 1285-1287.	10.7	98
233	Virotherapy with a Semliki Forest Virus–Based Vector Encoding IL12 Synergizes with PD-1/PD-L1 Blockade. Cancer Immunology Research, 2015, 3, 449-454.	3.4	88
234	Genetic Basis for Clinical Response to CTLA-4 Blockade. New England Journal of Medicine, 2015, 372, 783-783.	27.0	85

#	Article	IF	CITATIONS
235	Immunological landscape and immunotherapy of hepatocellular carcinoma. Nature Reviews Gastroenterology and Hepatology, 2015, 12, 681-700.	17.8	478
236	Agonists of Co-stimulation in Cancer Immunotherapy Directed Against CD137, OX40, GITR, CD27, CD28, and ICOS. Seminars in Oncology, 2015, 42, 640-655.	2.2	179
237	Functional expression of CD137 (4-1BB) on T helper follicular cells. Oncolmmunology, 2015, 4, e1054597.	4.6	15
238	Strict Requirement for Vector-Induced Type I Interferon in Efficacious Antitumor Responses to Virally Encoded IL12. Cancer Research, 2015, 75, 497-507.	0.9	34
239	Abstract 261: Nivolumab and urelumab enhance antitumor activity of human T lymphocytes engrafted in Rag2-/-IL2Rγnull immunodeficient mice. , 2015, , .		3
240	CEA-targeted engineered IL2: Clinical confirmation of tumor targeting and evidence of intra-tumoral immune activation Journal of Clinical Oncology, 2015, 33, 3016-3016.	1.6	12
241	Phase I/II safety and antitumor activity of nivolumab in patients with advanced hepatocellular carcinoma (HCC): CA209-040 Journal of Clinical Oncology, 2015, 33, LBA101-LBA101.	1.6	29
242	Phase I/II safety and antitumor activity of nivolumab in patients with advanced hepatocellular carcinoma (HCC): CA209-040 Journal of Clinical Oncology, 2015, 33, LBA101-LBA101.	1.6	100
243	B7-H3 Promotes Pathogenesis of Autoimmune Disease and Inflammation by Regulating the Activity of Different T Cell Subsets. PLoS ONE, 2015, 10, e0130126.	2.5	40
244	Abstract 281: Virotherapy with a Semliki Forest virus-based vector encoding IL-12 synergizes with PD-1/PD-L1 blockade. , 2015, , .		0
245	Abstract 4058: Hypoxia-induced soluble CD137 in malignant cells blocks CD137L-costimulation as an immune escape mechanism. , 2015, , .		0
246	Classification of current anticancer immunotherapies. Oncotarget, 2014, 5, 12472-12508.	1.8	395
247	Phase Ii Study with Immunotherapy with Dendritic Cells (Dc) Combined with Intratumoral Hiltonol in Patients with Advanced Cancer. Annals of Oncology, 2014, 25, iv371.	1.2	Ο
248	Awareness and understanding of cancer immunotherapy in Europe. Human Vaccines and Immunotherapeutics, 2014, 10, 1828-1835.	3.3	6
249	Combinations of immunostimulatory antibodies with synergistic effects against spontaneous cancer. Oncolmmunology, 2014, 3, e27812.	4.6	3
250	Serum Interleukin-8 Reflects Tumor Burden and Treatment Response across Malignancies of Multiple Tissue Origins. Clinical Cancer Research, 2014, 20, 5697-5707.	7.0	200
251	Immunotherapy of hepatocellular carcinoma. Hepatic Oncology, 2014, 1, 433-446.	4.2	5
252	Orchestrating immune check-point blockade for cancer immunotherapy in combinations. Current Opinion in Immunology, 2014, 27, 89-97.	5.5	111

Ignacio Melero Bermejo

#	Article	IF	CITATIONS
253	T-Cell and NK-Cell Infiltration into Solid Tumors: A Key Limiting Factor for Efficacious Cancer Immunotherapy. Cancer Discovery, 2014, 4, 522-526.	9.4	357
254	Therapeutic vaccines for cancer: an overview of clinical trials. Nature Reviews Clinical Oncology, 2014, 11, 509-524.	27.6	636
255	Genome Wide Association Study (Gwas) for Identification of Single Nucleotide Polymorphisms (Snps) Associated with Individuals Presenting Extreme Phenotypes of Tobacco Induced Non-Small Cell Lung Cancer (Nsclc) Risk. Annals of Oncology, 2014, 25, iv548.	1.2	0
256	Identification through genome-wide association study (GWAS) of single nucleotide polymorphisms (SNPs) associated with extreme phenotypes of tobacco-induced non-small cell lung cancer (NSCLC) risk Journal of Clinical Oncology, 2014, 32, 11046-11046.	1.6	1
257	Innate Functions of Immunoglobulin M Lessen Liver Gene Transfer with Helper-Dependent Adenovirus. PLoS ONE, 2014, 9, e85432.	2.5	8
258	Randomized phase II study with dendritic cell (DC) immunotherapy in patients with resected hepatic metastasis of colorectal carcinoma Journal of Clinical Oncology, 2014, 32, TPS3129-TPS3129.	1.6	0
259	Phase II study with immunotherapy with dendritic cells (DC) and intratumoral hiltonol in patients with advanced solid tumors Journal of Clinical Oncology, 2014, 32, TPS3113-TPS3113.	1.6	0
260	Serum interleukin-8 and its relationship to tumor burden and treatment response across malignancies of multiple tissue origins Journal of Clinical Oncology, 2014, 32, e22135-e22135.	1.6	0
261	Essential complicity of perforin-granzyme and FAS-L mechanisms to achieve tumor rejection following treatment with anti-CD137 mAb. , 2013, 1, 3.		27
262	Antitumor Immunotherapeutic and Toxic Properties of an HDL-Conjugated Chimeric IL-15 Fusion Protein. Cancer Research, 2013, 73, 139-149.	0.9	44
263	Agonist Antibodies to TNFR Molecules That Costimulate T and NK Cells. Clinical Cancer Research, 2013, 19, 1044-1053.	7.0	154
264	Better Performance of CARs Deprived of the PD-1 Brake. Clinical Cancer Research, 2013, 19, 5546-5548.	7.0	11
265	Combined Immunostimulatory Monoclonal Antibodies Extend Survival in an Aggressive Transgenic Hepatocellular Carcinoma Mouse Model. Clinical Cancer Research, 2013, 19, 6151-6162.	7.0	92
266	A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. Journal of Hepatology, 2013, 59, 81-88.	3.7	816
267	Clinical Development of Immunostimulatory Monoclonal Antibodies and Opportunities for Combination. Clinical Cancer Research, 2013, 19, 997-1008.	7.0	161
268	Liver Gene Therapy Approaches for Acute Intermittent Porphyria: Metabolic Correction and Immunological Hurdles. Handbook of Porphyrin Science, 2013, , 415-450.	0.8	0
269	Lymphatic Endothelium Forms Integrin-Engaging 3D Structures during DC Transit across Inflamed Lymphatic Vessels. Journal of Investigative Dermatology, 2013, 133, 2276-2285.	0.7	48
270	Correction: Agonist Antibodies to TNFR Molecules That Costimulate T and NK Cells. Clinical Cancer Research, 2013, 19, 1913-1913.	7.0	0

#	Article	IF	CITATIONS
271	Initial Afferent Lymphatic Vessels Controlling Outbound Leukocyte Traffic from Skin to Lymph Nodes. Frontiers in Immunology, 2013, 4, 433.	4.8	33
272	Cell tracking using multimodal imaging. Contrast Media and Molecular Imaging, 2013, 8, 432-438.	0.8	19
273	High-density lipoproteins delivering interleukin-15. Oncolmmunology, 2013, 2, e23410.	4.6	3
274	T Cell Costimulation with Anti-CD137 Monoclonal Antibodies Is Mediated by K63–Polyubiquitin-Dependent Signals from Endosomes. Journal of Immunology, 2013, 190, 6694-6706.	0.8	56
275	Interleukin-15 in Gene Therapy of Cancer. Current Gene Therapy, 2013, 13, 15-30.	2.0	37
276	Abstract B2: T cell costimulation in cancer immunotherapy with anti-CD137 monoclonal antibodies is mediated by K63-polyubiquitin-dependent signals from endosomes , 2013, , .		0
277	Abstract 1223: Antitumor immunotherapeutic and toxic properties of an HDL-conjugated chimeric IL-15 fusion protein , 2013, , .		0
278	Abstract LB-330: Therapeutic activity of a combination of immunostimulatory monoclonal antibodies (anti-B7-H1, CD137 and OX40) on a c-myc-driven spontaneous transgenic model of hepatocellular carcinoma , 2013, , .		0
279	Awareness and understanding of cancer immunotherapy in Europe Journal of Clinical Oncology, 2013, 31, 3053-3053.	1.6	0
280	The liver, liver metastasis and liver cancer: a special case for immunotherapy with cytokines and immunostimulatory monoclonal antibodies. Immunotherapy, 2012, 4, 1081-1085.	2.0	6
281	Virotherapy, gene transfer and immunostimulatory monoclonal antibodies. Oncolmmunology, 2012, 1, 1344-1354.	4.6	8
282	Cardiotrophin-1 determines liver engraftment of syngenic colon carcinoma cells through an immune system-mediated mechanism. Oncolmmunology, 2012, 1, 1527-1536.	4.6	8
283	CD8 T Cell Priming in the Presence of IFN-α Renders CTLs with Improved Responsiveness to Homeostatic Cytokines and Recall Antigens: Important Traits for Adoptive T Cell Therapy. Journal of Immunology, 2012, 189, 3299-3310.	0.8	36
284	Molecular Pathways: Hypoxia Response in Immune Cells Fighting or Promoting Cancer. Clinical Cancer Research, 2012, 18, 1207-1213.	7.0	182
285	Immunotherapeutic Synergy Between Anti-CD137 mAb and Intratumoral Administration of a Cytopathic Semliki Forest Virus Encoding IL-12. Molecular Therapy, 2012, 20, 1664-1675.	8.2	55
286	The HIF-1α Hypoxia Response in Tumor-Infiltrating T Lymphocytes Induces Functional CD137 (4-1BB) for Immunotherapy. Cancer Discovery, 2012, 2, 608-623.	9.4	156
287	Surfing the waves of the tide model of T cell co-stimulation. Inmunologia (Barcelona, Spain: 1987), 2012, 31, 31-33.	0.1	0
288	Transient and intensive pharmacological immunosuppression fails to improve AAV-based liver gene transfer in non-human primates. Journal of Translational Medicine, 2012, 10, 122.	4.4	58

#	Article	IF	CITATIONS
289	CD137 on inflamed lymphatic endothelial cells enhances CCL21â€guided migration of dendritic cells. FASEB Journal, 2012, 26, 3380-3392.	0.5	45
290	Abstract 3538: The HIF-11 \pm hypoxia response in mouse tumor-infiltrating T lymphocytes induces functional CD137 (4-1BB) for immunotherapy. , 2012, , .		1
291	Abstract 4387: Antiviral and antitumoral effects of the anti-CTLA4 agent tremelimumab in patients with hepatocellular carcinoma (HCC) and chronic hepatitis C virus (HCV) infection: Results from a phase II clinical trial. Cancer Research, 2012, 72, 4387-4387.	0.9	8
292	Liver Gene Transfer of Interkeukin-15 Constructs That Become Part of Circulating High Density Lipoproteins for Immunotherapy. PLoS ONE, 2012, 7, e52370.	2.5	16
293	Interleukin-15 in Gene Therapy of Cancer. Current Gene Therapy, 2012, 13, 15-30.	2.0	О
294	Agonist Anti-CD137 mAb Act on Tumor Endothelial Cells to Enhance Recruitment of Activated T Lymphocytes. Cancer Research, 2011, 71, 801-811.	0.9	137
295	Defining the critical hurdles in cancer immunotherapy. Journal of Translational Medicine, 2011, 9, 214.	4.4	139
296	New trends in immunotherapy. Inmunologia (Barcelona, Spain: 1987), 2011, 30, 128-134.	0.1	0
297	SimB16: Modeling Induced Immune System Response against B16-Melanoma. PLoS ONE, 2011, 6, e26523.	2.5	56
298	Carcinoma-Derived Interleukin-8 Disorients Dendritic Cell Migration Without Impairing T-Cell Stimulation. PLoS ONE, 2011, 6, e17922.	2.5	36
299	Dendritic Cells Take up and Present Antigens from Viable and Apoptotic Polymorphonuclear Leukocytes. PLoS ONE, 2011, 6, e29300.	2.5	27
300	Intratumoral injection of interferonâ€Î± and systemic delivery of agonist antiâ€CD137 monoclonal antibodies synergize for immunotherapy. International Journal of Cancer, 2011, 128, 105-118.	5.1	39
301	Synergistic effects of CTLAâ€4 blockade with tremelimumab and elimination of regulatory T lymphocytes <i>in vitro</i> and <i>in vivo</i> . International Journal of Cancer, 2011, 129, 374-386.	5.1	16
302	Pilot Clinical Trial of Type 1 Dendritic Cells Loaded with Autologous Tumor Lysates Combined with GM-CSF, Pegylated IFN, and Cyclophosphamide for Metastatic Cancer Patients. Journal of Immunology, 2011, 187, 6130-6142.	0.8	59
303	Direct Effects of Type I Interferons on Cells of the Immune System. Clinical Cancer Research, 2011, 17, 2619-2627.	7.0	390
304	Abstract 4567: Polyubiquitin K63-related CD137 signalsomes in T cells stimulated with agonist anti-CD137 monoclonal antibodies. , 2011, , .		0
305	Abstract 4740: Agonist anti-CD137 mAb act on tumor endothelial cells to enhance recruitment ofactivated T lymphocytes. , 2011, , .		0
306	Treatment with anti-CD137 mAbs causes intense accumulations of liver T cells without selective antitumor immunotherapeutic effects in this organ. Cancer Immunology, Immunotherapy, 2010, 59, 1223-1233.	4.2	107

#	Article	IF	CITATIONS
307	Delivery of immunostimulatory monoclonal antibodies by encapsulated hybridoma cells. Cancer Immunology, Immunotherapy, 2010, 59, 1621-1631.	4.2	38
308	Selection of extreme phenotypes: the role of clinical observation in translational research. Clinical and Translational Oncology, 2010, 12, 174-180.	2.4	34
309	Clinical Experiences With Anti-CD137 and Anti-PD1 Therapeutic Antibodies. Seminars in Oncology, 2010, 37, 508-516.	2.2	256
310	Dendritic cells adhere to and transmigrate across lymphatic endothelium in response to IFNâ€Î±. European Journal of Immunology, 2010, 40, 3054-3063.	2.9	49
311	Effects of IFNâ€Î± as a signalâ€3 cytokine on human naÃ⁻ve and antigenâ€experienced CD8 ⁺ T cells. European Journal of Immunology, 2010, 40, 3389-3402.	2.9	61
312	Proliferating NK cells in response to IL-15 do not upregulate surface B220 in vivo. Gene Therapy, 2010, 17, 687-689.	4.5	1
313	Intensive Pharmacological Immunosuppression Allows for Repetitive Liver Gene Transfer With Recombinant Adenovirus in Nonhuman Primates. Molecular Therapy, 2010, 18, 754-765.	8.2	31
314	1134 AAV MEDIATED LIVER GENE THERAPY PROVIDES PROLONGED ENZYMATIC CORRECTION AND PROTECTS AGAINST INDUCED MOTOR NEUROPATHY IN ACUTE INTERMITTENT PORPHYRIA MICE. Journal of Hepatology, 2010, 52, S437-S438.	3.7	0
315	Porphobilinogen deaminase over-expression in hepatocytes, but not in erythrocytes, prevents accumulation of toxic porphyrin precursors in a mouse model of acute intermittent porphyria. Journal of Hepatology, 2010, 52, 417-424.	3.7	31
316	Interferon producing killer dendritic cells (IKDC): A matter of controversy. Inmunologia (Barcelona,) Tj ETQq0 0 0 r	gBT /Over 0.1	lock 10 Tf 5
317	Palettes of Vaccines and Immunostimulatory Monoclonal Antibodies for Combination. Clinical Cancer Research, 2009, 15, 1507-1509.	7.0	25
318	Lysine 63 Polyubiquitination in Immunotherapy and in Cancer-promoting Inflammation. Clinical Cancer Research, 2009, 15, 6751-6757.	7.0	42
319	Clinical development of combination strategies in immunotherapy: are we ready for more than one investigational product in an early clinical trial?. Immunotherapy, 2009, 1, 845-853.	2.0	17
320	<i>In vivo</i> depletion of DC impairs the antiâ€ŧumor effect of agonistic anti D137 mAb. European Journal of Immunology, 2009, 39, 2424-2436.	2.9	47
321	PET imaging of thymidine kinase gene expression in the liver of non-human primates following systemic delivery of an adenoviral vector. Gene Therapy, 2009, 16, 136-141.	4.5	15
322	Influence of bevacizumab, sunitinib and sorafenib as single agents or in combination on the inhibitory effects of VEGF on human dendritic cell differentiation from monocytes. British Journal of Cancer, 2009, 100, 1111-1119.	6.4	183
323	Identification of TNF-α and MMP-9 as potential baseline predictive serum markers of sunitinib activity in patients with renal cell carcinoma using a human cytokine array. British Journal of Cancer, 2009, 101, 1876-1883.	6.4	79
	Identification of baseline predictive markers of sunitinib activity using a human cytokine antibody		

array in patients with metastatic renal cell carcinoma (MRCC). Journal of Clinical Oncology, 2009, 27,
1.6
5113-5113.

#	Article	IF	CITATIONS
325	ILâ€10 suppressor activity and <i>ex vivo</i> Tr1 cell function are impaired in multiple sclerosis. European Journal of Immunology, 2008, 38, 576-586.	2.9	120
326	Interleukin-15 liver gene transfer increases the number and function of IKDCs and NK cells. Gene Therapy, 2008, 15, 473-483.	4.5	20
327	Immunotherapy for neurological diseases. Clinical Immunology, 2008, 128, 294-305.	3.2	51
328	Multi-layered action mechanisms of CD137 (4-1BB)-targeted immunotherapies. Trends in Pharmacological Sciences, 2008, 29, 383-390.	8.7	100
329	Polly Matzinger's "danger model―finds its predicted danger-denoting self moieties. Inmunologia (Barcelona, Spain: 1987), 2008, 27, 205-211.	0.1	2
330	Immunosuppression Routed Via the Kynurenine Pathway: A Biochemical and Pathophysiologic Approach. Advances in Clinical Chemistry, 2008, 45, 155-197.	3.7	36
331	Therapeutic Antitumor Efficacy of Anti-CD137 Agonistic Monoclonal Antibody in Mouse Models of Myeloma. Clinical Cancer Research, 2008, 14, 6895-6906.	7.0	79
332	Antitumor T-cell wars: do CD4s outwit CD8s?. Blood, 2007, 109, 5070-5071.	1.4	0
333	106 Interferon-Producing Killer Dendritic Cells and Natural Killer Cells Response to Interleukin-15 Liver Gene Transfer. Cytokine, 2007, 39, 29.	3.2	0
334	Absence of surface expression of CD137 (4-1BB) on Myeloid-derived suppressor cells. Inmunologia (Barcelona, Spain: 1987), 2007, 26, 121-126.	0.1	6
335	Cellular liaisons of natural killer lymphocytes in immunology and immunotherapy of cancer. Expert Opinion on Biological Therapy, 2007, 7, 599-615.	3.1	22
336	A Network Analysis of the Human T-Cell Activation Gene Network Identifies Jagged1 as a Therapeutic Target for Autoimmune Diseases. PLoS ONE, 2007, 2, e1222.	2.5	44
337	The combined actions of NK and T lymphocytes are necessary to reject an EGFP+ mesenchymal tumor through mechanisms dependent on NKG2D and IFNγ. International Journal of Cancer, 2007, 121, 1282-1295.	5.1	16
338	Immunostimulatory monoclonal antibodies for cancer therapy. Nature Reviews Cancer, 2007, 7, 95-106.	28.4	564
339	Imiquimod Enhances the Systemic Immunity Attained by Local Cryosurgery Destruction of Melanoma Lesions. Journal of Investigative Dermatology, 2007, 127, 1673-1680.	0.7	103
340	Bone-marrow-derived cell differentiation into microglia: A study in a progressive mouse model of Parkinson's disease. Neurobiology of Disease, 2007, 28, 316-325.	4.4	62
341	Immunotherapy and immunoescape in colorectal cancer. World Journal of Gastroenterology, 2007, 13, 5822.	3.3	36
342	Immunogenic Cell Death and Cross-Priming Are Reaching the Clinical Immunotherapy Arena: Fig. 1 Clinical Cancer Research, 2006, 12, 2385-2389.	7.0	25

#	Article	IF	CITATIONS
343	Clinical Benefit Associated With Idiotypic Vaccination in Patients With Follicular Lymphoma. Journal of the National Cancer Institute, 2006, 98, 1292-1301.	6.3	155
344	Low Surface Expression of B7-1 (CD80) Is an Immunoescape Mechanism of Colon Carcinoma. Cancer Research, 2006, 66, 2442-2450.	0.9	129
345	Recombinant Adenoviral Vectors Turn on the Type I Interferon System without Inhibition of Transgene Expression and Viral Replication. Molecular Therapy, 2006, 14, 129-138.	8.2	38
346	CD137/CD137 Ligand in Tumor and Viral Immunotherapy. , 2006, , 117-135.		0
347	The Many Sounds of T Lymphocyte Silence. Immunologic Research, 2005, 33, 135-148.	2.9	7
348	Dendritic cells delivered inside human carcinomas are sequestered by interleukin-8. International Journal of Cancer, 2005, 116, 275-281.	5.1	112
349	Gene Therapy of Cancer Based on Interleukin 12. Current Gene Therapy, 2005, 5, 573-581.	2.0	85
350	Intratumoural administration of dendritic cells: hostile environment and help by gene therapy. Expert Opinion on Biological Therapy, 2005, 5, 7-22.	3.1	13
351	Intratumoral Injection of Dendritic Cells Transduced by an SV40-Based Vector Expressing Interleukin-15 Induces Curative Immunity Mediated by CD8+ T Lymphocytes and NK Cells. Molecular Therapy, 2005, 12, 950-959.	8.2	29
352	Intratumoral Injection of Dendritic Cells Engineered to Secrete Interleukin-12 by Recombinant Adenovirus in Patients With Metastatic Gastrointestinal Carcinomas. Journal of Clinical Oncology, 2005, 23, 999-1010.	1.6	170
353	Enhancement of CD4 and CD8 immunity by anti-CD137 (4-1BB) monoclonal antibodies during hepatitis C vaccination with recombinant adenovirus. Vaccine, 2005, 23, 3493-3499.	3.8	36
354	Phase I Trial of Intratumoral Injection of an Adenovirus Encoding Interleukin-12 for Advanced Digestive Tumors. Journal of Clinical Oncology, 2004, 22, 1389-1397.	1.6	295
355	Improving efficacy of interleukin-12-transfected dendritic cells injected into murine colon cancer with anti-CD137 monoclonal antibodies and alloantigens. International Journal of Cancer, 2004, 110, 51-60.	5.1	65
356	Biologic therapy of liver tumors. Surgical Clinics of North America, 2004, 84, 673-696.	1.5	7
357	MAGE antigens: therapeutic targets in hepatocellular carcinoma?. Journal of Hepatology, 2004, 40, 155-158.	3.7	2
358	Pancreatic cancer escape variants that evade immunogene therapy through loss of sensitivity to IFNÎ ³ -induced apoptosis. Gene Therapy, 2003, 10, 1067-1078.	4.5	35
359	Expression of core and E1 proteins from hepatitis C virus in dendritic cells impairs T cell induction in vivo. Journal of Hepatology, 2003, 38, 15.	3.7	0
360	CD4+/CD25+ Regulatory Cells Inhibit Activation of Tumor-Primed CD4+ T Cells with IFN-Î ³ -Dependent Antiangiogenic Activity, as well as Long-Lasting Tumor Immunity Elicited by Peptide Vaccination. Journal of Immunology, 2003, 171, 5931-5939.	0.8	186

#	Article	IF	CITATIONS
361	Hepatitis C Virus Structural Proteins Impair Dendritic Cell Maturation and Inhibit In Vivo Induction of Cellular Immune Responses. Journal of Virology, 2003, 77, 10862-10871.	3.4	127
362	The promise of gene therapy in gastrointestinal and liver diseases. Gut, 2003, 52, 49ii-54.	12.1	23
363	Gene Therapy of Cancer with Interleukin-12. Current Pharmaceutical Design, 2003, 9, 1981-1991.	1.9	63
364	Anti-ICAM-2 monoclonal antibody synergizes with intratumor gene transfer of interleukin-12 inhibiting activation-induced T-cell death. Clinical Cancer Research, 2003, 9, 3546-54.	7.0	6
365	Potentiation of therapeutic immune responses against malignancies with monoclonal antibodies. Clinical Cancer Research, 2003, 9, 5454-64.	7.0	25
366	Immunotherapy of hepatocellular carcinoma. Expert Opinion on Biological Therapy, 2002, 2, 123-133.	3.1	18
367	Gene therapy for liver diseases: recent strategies for treatment of viral hepatitis and liver malignancies. Gut, 2002, 50, 130-135.	12.1	34
368	Cytokine Gene Transfer into Dendritic Cells for Cancer Treatment. Current Gene Therapy, 2002, 2, 79-89.	2.0	23
369	Antitumoral effects of intratumoral injection of two adenoviruses, one encoding IL-12 and another encodig MIP-3A in a murine model of liver metastatic pancreatic cancer. Journal of Hepatology, 2002, 36, 159.	3.7	0
370	Upregulation of natural killer cells functions underlies the efficacy of intratumorally injected dendritic cells engineered to produce interleukin-12. Experimental Hematology, 2002, 30, 195-204.	0.4	25
371	Clinical implications of antigen transfer mechanisms from malignant to dendritic cells Exploiting cross-priming. Experimental Hematology, 2002, 30, 1355-1364.	0.4	39
372	Effective tumor immunotherapy: start the engine, release the brakes, step on the gas pedal,and get ready to face autoimmunity. Archivum Immunologiae Et Therapiae Experimentalis, 2002, 50, 13-8.	2.3	10
373	An anti-ICAM-2 (CD102) monoclonal antibody induces immune-mediated regressions of transplanted ICAM-2-negative colon carcinomas. Cancer Research, 2002, 62, 3167-74.	0.9	13
374	Toxicological studies in an orthotopic HCC in buffalo rats treated by intratumoral injection of adenoviral vectors coding for IL-12 or CD40L. Journal of Hepatology, 2001, 34, 221.	3.7	0
375	IL-12 gene therapy for cancer: in synergy with other immunotherapies. Trends in Immunology, 2001, 22, 113-115.	6.8	73
376	Immunization with a tumor-associated CTL epitope plus a tumor-related or unrelated Th1 helper peptide elicits protective CTL immunity. European Journal of Immunology, 2001, 31, 1780-1789.	2.9	77
377	Gene therapy of orthotopic hepatocellular carcinoma in rats using adenovirus coding for interleukin 12. Hepatology, 2001, 33, 52-61.	7.3	139
378	Genetic heterogeneity in the toxicity to systemic adenoviral gene transfer of interleukin-12. Gene Therapy, 2001, 8, 259-267.	4.5	49

#	Article	IF	CITATIONS
379	Thrombopenic purpura induced by a monoclonal antibody directed to a 35-kilodalton surface protein (p35) expressed on murine platelets and endothelial cells. Experimental Hematology, 2001, 29, 589-595.	0.4	3
380	αvβ3 Integrin-Mediated Adenoviral Transfer of Interleukin-12 at the Periphery of Hepatic Colon Cancer Metastases Induces VCAM-1 Expression and T-Cell Recruitment. Molecular Therapy, 2001, 3, 665-672.	8.2	20
381	Feeding dendritic cells with tumor antigens: self-service buffet or à la carte?. Gene Therapy, 2000, 7, 1167-1170.	4.5	45
382	Intratumoral Coinjection of Two Adenoviruses, One Encoding the Chemokine IFN-Î ³ -Inducible Protein-10 and Another Encoding IL-12, Results in Marked Antitumoral Synergy. Journal of Immunology, 2000, 164, 3112-3122.	0.8	162
383	Adenoviral Gene Transfer of Interleukin 12 into Tumors Synergizes with Adoptive T Cell Therapy Both at the Induction and Effector Level. Human Gene Therapy, 2000, 11, 113-125.	2.7	54
384	Adenovirus mediated intratumoral gene transfer of IP-10 and IL-12 display potent antitumor synergy and improve adoptive T-cell therapy. Journal of Hepatology, 2000, 32, 27.	3.7	0
385	Intratumoral injection of bone-marrow derived dendritic cells engineered to produce interleukin-12 induces complete regression of established murine transplantable colon adenocarcinomas. Gene Therapy, 1999, 6, 1779-1784.	4.5	122
386	NK1.1 Cells Express 4-1BB (CDw137) Costimulatory Molecule and Are Required for Tumor Immunity Elicited by Anti-4-1BB Monoclonal Antibodies. Cellular Immunology, 1998, 190, 167-172.	3.0	335
387	Amplification of tumor immunity by gene transfer of the co-stimulatory 4-1BB ligand: synergy with the CD28 co-stimulatory pathway. European Journal of Immunology, 1998, 28, 1116-1121.	2.9	194
388	Amplification of tumor immunity by gene transfer of the co-stimulatory 4-1BB ligand: synergy with the CD28 co-stimulatory pathway. , 1998, 28, 1116.		1
389	Costimulation, tolerance and ignorance of cytolytic T lymphocytes in immune responses to tumor antigens. Life Sciences, 1997, 60, 2035-2041.	4.3	41
390	Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nature Medicine, 1997, 3, 682-685.	30.7	830
391	Structure and function of the CD94 C-type lectin receptor complex involved in recognition of HLA class I molecules. Immunological Reviews, 1997, 155, 165-174.	6.0	130
392	Immunological ignorance of an E7-encoded cytolytic T-lymphocyte epitope in transgenic mice expressing the E7 and E6 oncogenes of human papillomavirus type 16. Journal of Virology, 1997, 71, 3998-4004.	3.4	74
393	The CD94/NKG2-A inhibitory receptor complex is involved in natural killer cell-mediated recognition of cells expressing HLA-G1. Journal of Immunology, 1997, 158, 5736-43.	0.8	116
394	Functional Resemblance between the Ig-Related NK Cell Receptors Specific for HLA Class I Molecules and the CD94 C-Type Lectin. Chemical Immunology and Allergy, 1996, 64, 116-134.	1.7	3
395	Functional analysis of α1β1 integrin in human natural killer cells. European Journal of Immunology, 1996, 26, 2023-2029.	2.9	26
396	Expression and function of \hat{l} ± 4 / \hat{l}^2 7 integrin on human natural killer cells. Immunology, 1996, 89, 96-104.	4.4	29

#	Article	IF	CITATIONS
397	Biochemical and serologic evidence for the existence of functionally distinct forms of the CD94 NK cell receptor. Journal of Immunology, 1996, 157, 5367-74.	0.8	41
398	Functional ambivalence of the Kp43 (CD94) NK cell-associated surface antigen. Journal of Immunology, 1995, 154, 5779-88.	0.8	93
399	The NKB1 and HP-3E4 NK cells receptors are structurally distinct glycoproteins and independently recognize polymorphic HLA-B and HLA-C molecules. Journal of Immunology, 1995, 154, 3320-7.	0.8	63
400	Tyrosine kinase-dependent activation of human NK cell functions upon stimulation through a 58-kDa surface antigen selectively expressed on discrete subsets of NK cells and T lymphocytes. Journal of Immunology, 1994, 152, 1662-73.	0.8	49
401	Signaling through the LFA-1 leucocyte integrin actively regulates intercellular adhesion and tumor necrosis factor-I± production in natural killer cells. European Journal of Immunology, 1993, 23, 1859-1865.	2.9	46
402	Stimulation of IL-2-activated natural killer cells through the Kp43 surface antigen up-regulates TNF-alpha production involving the LFA-1 integrin. Journal of Immunology, 1993, 151, 3420-9.	0.8	14
403	Immunotherapeutic and toxic effects of a triple fusion protein encompassing apolipoprotein A-I, IL-15 and IL-15Ra sushi domain. Frontiers in Immunology, 0, 4, .	4.8	0