
Daniele Avitabile

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3046675/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancement of Myocardial Regeneration Through Genetic Engineering of Cardiac Progenitor Cells Expressing Pim-1 Kinase. Circulation, 2009, 120, 2077-2087.	1.6	201
2	Myocardial AKT: The Omnipresent Nexus. Physiological Reviews, 2011, 91, 1023-1070.	28.8	196
3	Human Cardiac Progenitor Cells Engineered With Pim-I Kinase Enhance Myocardial Repair. Journal of the American College of Cardiology, 2012, 60, 1278-1287.	2.8	140
4	Myocardial infarction induces embryonic reprogramming of epicardial c-kit+ cells: Role of the pericardial fluid. Journal of Molecular and Cellular Cardiology, 2010, 48, 609-618.	1.9	126
5	Oxidative Stress-Induced miR-200c Disrupts the Regulatory Loop Among SIRT1, FOXO1, and eNOS. Antioxidants and Redox Signaling, 2017, 27, 328-344.	5.4	110
6	Fibronectin Is Essential for Reparative Cardiac Progenitor Cell Response After Myocardial Infarction. Circulation Research, 2013, 113, 115-125.	4.5	105
7	Pim-1 Kinase Protects Mitochondrial Integrity in Cardiomyocytes. Circulation Research, 2010, 106, 1265-1274.	4.5	100
8	Cardiac Progenitor Cell Cycling Stimulated by Pim-1 Kinase. Circulation Research, 2010, 106, 891-901.	4.5	91
9	Mitochondrial translocation of Nur77 mediates cardiomyocyte apoptosis. European Heart Journal, 2011, 32, 2179-2188.	2.2	79
10	Nucleostemin Rejuvenates CardiacÂProgenitor Cells and AntagonizesÂMyocardial Aging. Journal of the American College of Cardiology, 2015, 65, 133-147.	2.8	67
11	Nucleolar stress is an early response to myocardial damage involving nucleolar proteins nucleostemin and nucleophosmin. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6145-6150.	7.1	62
12	β-Adrenergic Regulation of Cardiac Progenitor Cell Death Versus Survival and Proliferation. Circulation Research, 2013, 112, 476-486.	4.5	59
13	Cardiomyocyte cell cycle dynamics and proliferation revealed through cardiac-specific transgenesis of fluorescent ubiquitinated cell cycle indicator (FUCCI). Journal of Molecular and Cellular Cardiology, 2019, 127, 154-164.	1.9	53
14	Circulating <i>miR-33a</i> and <i>miR-33b</i> are up-regulated in familial hypercholesterolaemia in paediatric age. Clinical Science, 2015, 129, 963-972.	4.3	51
15	Preservation of Myocardial Structure Is Enhanced by Pim-1 Engineering of Bone Marrow Cells. Circulation Research, 2012, 111, 77-86.	4.5	45
16	Electrophysiological properties of mouse bone marrow c-kit cells co-cultured onto neonatal cardiac myocytes. Cardiovascular Research, 2005, 66, 482-492.	3.8	41
17	Altered SDF-1-mediated differentiation of bone marrow-derived endothelial progenitor cells in diabetes mellitus. Journal of Cellular and Molecular Medicine, 0, 13, 3405-3414.	3.6	41
18	Mammalian cell transduction and internalization properties of λ phages displaying the full-length adenoviral penton base or its central domain. Journal of Molecular Medicine, 2004, 82, 467-476.	3.9	38

DANIELE AVITABILE

#	Article	IF	CITATIONS
19	Altered SDF-1-mediated differentiation of bone marrow-derived endothelial progenitor cells in diabetes mellitus. Journal of Cellular and Molecular Medicine, 2009, 13, 3405-3414.	3.6	36
20	Doxorubicin upregulates CXCR4 via miR-200c/ZEB1-dependent mechanism in human cardiac mesenchymal progenitor cells. Cell Death and Disease, 2017, 8, e3020-e3020.	6.3	33
21	Asymmetric Chromatid Segregation in Cardiac Progenitor Cells Is Enhanced by Pim-1 Kinase. Circulation Research, 2012, 110, 1169-1173.	4.5	31
22	Human cord blood CD34+ progenitor cells acquire functional cardiac properties through a cell fusion process. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1875-H1884.	3.2	29
23	Circulating <i>miR-200c</i> is up-regulated in paediatric patients with familial hypercholesterolaemia and correlates with <i>miR-33a/b</i> levels: implication of a ZEB1-dependent mechanism. Clinical Science, 2017, 131, 2397-2408.	4.3	27
24	Peroxiredoxin 2 nuclear levels are regulated by circadian clock synchronization in human keratinocytes. International Journal of Biochemistry and Cell Biology, 2014, 53, 24-34.	2.8	25
25	Transcriptional Profiling of Hmgb1-Induced Myocardial Repair Identifies a Key Role for Notch Signaling. Molecular Therapy, 2013, 21, 1841-1851.	8.2	22
26	Histone Deacetylase Inhibition Enhances Self Renewal and Cardioprotection by Human Cord Blood-Derived CD34+ Cells. PLoS ONE, 2011, 6, e22158.	2.5	21
27	Use of DNA Microarrays to Monitor Host Response to Virus and Virus-Derived Gene Therapy Vectors. Molecular Diagnosis and Therapy, 2004, 4, 345-356.	3.3	20
28	Cardioprotective stimuli mediate phosphoinositide 3-kinase and phosphoinositide dependent kinase 1 nuclear accumulation in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2009, 47, 96-103.	1.9	18
29	Gene transfer into human cord bloodâ^'derived CD34+ cells by adeno-associated viral vectors. Experimental Hematology, 2010, 38, 707-717.	0.4	17
30	Nucleolar localization and circadian regulation of Per2S, a novel splicing variant of the Period 2 gene. Cellular and Molecular Life Sciences, 2014, 71, 2547-2559.	5.4	17
31	Nuclear redox imbalance affects circadian oscillation in HaCaT keratinocytes. International Journal of Biochemistry and Cell Biology, 2015, 65, 113-124.	2.8	17
32	Different modulation of cellular transcription by adenovirus 5, ΔE1/E3 adenovirus and helper-dependent vectors. Virus Research, 2007, 130, 71-84.	2.2	14
33	c-kit–Positive Cardiac Progenitor Cells. Circulation Research, 2013, 112, 1202-1204.	4.5	14
34	Functional properties of cells obtained from human cord blood CD34 ⁺ stem cells and mouse cardiac myocytes in coculture. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H1541-H1549.	3.2	12
35	Metaboloepigenetics: The Emerging Network in Stem Cell Homeostasis Regulation. Current Stem Cell Research and Therapy, 2016, 11, 352-369.	1.3	10
36	Physiological conditions influencing regenerative potential of stem cells. Frontiers in Bioscience - Landmark, 2016, 21, 1126-1150.	3.0	7

DANIELE AVITABILE

#	Article	IF	CITATIONS
37	The Nucleolar Protein Nucleophosmin Is Physiologically Secreted by Endothelial Cells in Response to Stress Exerting Proangiogenic Activity Both In Vitro and In Vivo. International Journal of Molecular Sciences, 2021, 22, 3672.	4.1	7
38	Doxorubicin induces an alarmin-like TLR4-dependent autocrine/paracrine action of Nucleophosmin in human cardiac mesenchymal progenitor cells. BMC Biology, 2021, 19, 124.	3.8	7
39	Monocyte dysfunction induced by low density lipoprotein occurs via a DUSP-1/p38 MAPK signaling impairment. International Journal of Cardiology, 2018, 255, 166-167.	1.7	5
40	Extracellular Nucleophosmin Is Increased in Psoriasis and Correlates With the Determinants of Cardiovascular Diseases. Frontiers in Cardiovascular Medicine, 2022, 9, 867813.	2.4	3
41	Growth Induction and Low-Oxygen Apoptosis Inhibition of Human CD34+Progenitors in Collagen Gels. BioMed Research International, 2013, 2013, 1-5.	1.9	2
42	Stem Cells and Cardiac Repair. Stem Cells International, 2015, 2015, 1-2.	2.5	0