
Carel B Hoyng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3045828/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nature Genetics, 2016, 48, 134-143.	9.4	1,167
2	Mutations in the CEP290 (NPHP6) Gene Are a Frequent Cause of Leber Congenital Amaurosis. American Journal of Human Genetics, 2006, 79, 556-561.	2.6	608
3	Non-syndromic retinitis pigmentosa. Progress in Retinal and Eye Research, 2018, 66, 157-186.	7.3	565
4	Rare and low-frequency coding variants alter human adult height. Nature, 2017, 542, 186-190.	13.7	544
5	Consensus Definition for Atrophy Associated with Age-Related Macular Degeneration on OCT. Ophthalmology, 2018, 125, 537-548.	2.5	485
6	Autosomal recessive retinitis pigmentosa and cone-rod dystrophy caused by splice site mutations in the Stargardt's disease gene ABCR. Human Molecular Genetics, 1998, 7, 355-362.	1.4	475
7	Multi-country real-life experience of anti-vascular endothelial growth factor therapy for wet age-related macular degeneration. British Journal of Ophthalmology, 2015, 99, 220-226.	2.1	474
8	Mutations in the ABCA4 (ABCR) Gene Are the Major Cause of Autosomal Recessive Cone-Rod Dystrophy. American Journal of Human Genetics, 2000, 67, 960-966.	2.6	294
9	The spectrum of ocular phenotypes caused by mutations in the BEST1 gene. Progress in Retinal and Eye Research, 2009, 28, 187-205.	7.3	290
10	Central serous chorioretinopathy: Towards an evidence-based treatment guideline. Progress in Retinal and Eye Research, 2019, 73, 100770.	7.3	276
11	The 2588C→C Mutation in the ABCR Gene Is a Mild Frequent Founder Mutation in the Western European Population and Allows the Classification of ABCR Mutations in Patients with Stargardt Disease. American Journal of Human Genetics, 1999, 64, 1024-1035.	2.6	242
12	Half-Dose Photodynamic Therapy versus High-Density Subthreshold Micropulse Laser Treatment in Patients with Chronic Central Serous Chorioretinopathy. Ophthalmology, 2018, 125, 1547-1555.	2.5	209
13	The spectrum of retinal dystrophies caused by mutations in the peripherin/RDS gene. Progress in Retinal and Eye Research, 2008, 27, 213-235.	7.3	200
14	Risk factors for progression of ageâ€related macular degeneration. Ophthalmic and Physiological Optics, 2020, 40, 140-170.	1.0	183
15	Imaging Protocols in Clinical Studies in Advanced Age-Related Macular Degeneration. Ophthalmology, 2017, 124, 464-478.	2.5	164
16	Clinical and Genetic Characteristics of Late-onset Stargardt's Disease. Ophthalmology, 2012, 119, 1199-1210.	2.5	162
17	A functional variant in the CFI gene confers a high risk of age-related macular degeneration. Nature Genetics, 2013, 45, 813-817.	9.4	162
18	Deep-intronic ABCA4 variants explain missing heritability in Stargardt disease and allow correction of splice defects by antisense oligonucleotides. Genetics in Medicine, 2019, 21, 1751-1760.	1.1	147

#	Article	IF	CITATIONS
19	Causes and consequences of inherited cone disorders. Progress in Retinal and Eye Research, 2014, 42, 1-26.	7.3	127
20	Early-Onset Stargardt Disease. Ophthalmology, 2015, 122, 335-344.	2.5	127
21	Deep learning approach for the detection and quantification of intraretinal cystoid fluid in multivendor optical coherence tomography. Biomedical Optics Express, 2018, 9, 1545.	1.5	124
22	<i>In Silico</i> Functional Meta-Analysis of 5,962 <i>ABCA4</i> Variants in 3,928 Retinal Dystrophy Cases. Human Mutation, 2017, 38, 400-408.	1.1	118
23	ABCR unites what ophthalmologists divide(s). Ophthalmic Genetics, 1998, 19, 117-122.	0.5	115
24	Mutations in the peripherin/RDS gene are an important cause of multifocal pattern dystrophy simulating STGD1/fundus flavimaculatus. British Journal of Ophthalmology, 2007, 91, 1504-1511.	2.1	110
25	Intein-mediated protein trans-splicing expands adeno-associated virus transfer capacity in the retina. Science Translational Medicine, 2019, 11, .	5.8	109
26	Chronic Central Serous Chorioretinopathy Is Associated with Genetic Variants Implicated in Age-Related Macular Degeneration. Ophthalmology, 2015, 122, 562-570.	2.5	107
27	BBS1 Mutations in a Wide Spectrum of Phenotypes Ranging From Nonsyndromic Retinitis Pigmentosa to Bardet-Biedl Syndrome. JAMA Ophthalmology, 2012, 130, 1425.	2.6	106
28	Robust total retina thickness segmentation in optical coherence tomography images using convolutional neural networks. Biomedical Optics Express, 2017, 8, 3292.	1.5	106
29	Identification and Rescue of Splice Defects Caused by Two Neighboring Deep-Intronic ABCA4 Mutations Underlying Stargardt Disease. American Journal of Human Genetics, 2018, 102, 517-527.	2.6	105
30	Diagnostic exome sequencing in 266 Dutch patients with visual impairment. European Journal of Human Genetics, 2017, 25, 591-599.	1.4	104
31	The spectrum of retinal phenotypes caused by mutations in the ABCA4 gene. Graefe's Archive for Clinical and Experimental Ophthalmology, 2005, 243, 90-100.	1.0	103
32	Basal Laminar Drusen Caused by Compound Heterozygous Variants in the CFH Gene. American Journal of Human Genetics, 2008, 82, 516-523.	2.6	99
33	Systemic and ocular fluid compounds as potential biomarkers in age-related macular degeneration. Survey of Ophthalmology, 2018, 63, 9-39.	1.7	98
34	Photoreceptor Progenitor mRNA Analysis Reveals Exon Skipping Resulting from the ABCA4 c.5461-10T→C Mutation in Stargardt Disease. Ophthalmology, 2016, 123, 1375-1385.	2.5	96
35	Exome Sequencing and cis-Regulatory Mapping Identify Mutations in MAK, a Gene Encoding a Regulator of Ciliary Length, as a Cause of Retinitis Pigmentosa. American Journal of Human Genetics, 2011, 89, 253-264.	2.6	95
36	Central Areolar Choroidal Dystrophy. Ophthalmology, 2009, 116, 771-782.e1.	2.5	94

#	Article	IF	CITATIONS
37	Automated Staging of Age-Related Macular Degeneration Using Optical Coherence Tomography. , 2017, 58, 2318.		93
38	Resolving the dark matter of ABCA4 for 1054 Stargardt disease probands through integrated genomics and transcriptomics. Genetics in Medicine, 2020, 22, 1235-1246.	1.1	92
39	Clinical and Genetic Heterogeneity in Multifocal Vitelliform Dystrophy. JAMA Ophthalmology, 2007, 125, 1100.	2.6	88
40	Mutations in RAB28, Encoding a Farnesylated Small GTPase, Are Associated with Autosomal-Recessive Cone-Rod Dystrophy. American Journal of Human Genetics, 2013, 93, 110-117.	2.6	85
41	The cost-effectiveness of bevacizumab, ranibizumab and aflibercept for the treatment of age-related macular degeneration—A cost-effectiveness analysis from a societal perspective. PLoS ONE, 2018, 13, e0197670.	1.1	78
42	The spectrum of phenotypes caused by variants in the CFH gene. Molecular Immunology, 2009, 46, 1573-1594.	1.0	76
43	Visual Prognosis in USH2A-Associated Retinitis Pigmentosa Is Worse for Patients with Usher Syndrome Type IIa Than for Those with Nonsyndromic Retinitis Pigmentosa. Ophthalmology, 2016, 123, 1151-1160.	2.5	76
44	Genotypic and Phenotypic Characteristics of CRB1 -Associated Retinal Dystrophies. Ophthalmology, 2017, 124, 884-895.	2.5	75
45	Structural Variants Create New Topological-Associated Domains and Ectopic Retinal Enhancer-Gene Contact in Dominant Retinitis Pigmentosa. American Journal of Human Genetics, 2020, 107, 802-814.	2.6	75
46	Macular dystrophies mimicking age-related macular degeneration. Progress in Retinal and Eye Research, 2014, 39, 23-57.	7.3	74
47	Physical Activity and Age-related Macular Degeneration: A Systematic Literature Review and Meta-analysis. American Journal of Ophthalmology, 2017, 180, 29-38.	1.7	74
48	Increased circulating levels of Factor H-Related Protein 4 are strongly associated with age-related macular degeneration. Nature Communications, 2020, 11, 778.	5.8	74
49	Fundus autofluorescence imaging of retinal dystrophies. Vision Research, 2008, 48, 2569-2577.	0.7	73
50	Heterozygous Deep-Intronic Variants and Deletions in <i>ABCA4</i> in Persons with Retinal Dystrophies and One Exonic <i>ABCA4</i> Variant. Human Mutation, 2015, 36, 43-47.	1.1	68
51	The Common <i>ABCA4</i> Variant p.Asn1868lle Shows Nonpenetrance and Variable Expression of Stargardt Disease When Present in <i>trans</i> With Severe Variants. , 2018, 59, 3220.		67
52	Disruption of the Basal Body Protein POC1B Results in Autosomal-Recessive Cone-Rod Dystrophy. American Journal of Human Genetics, 2014, 95, 131-142.	2.6	65
53	Hyperreflective foci on optical coherence tomography associate with treatment outcome for anti-VEGF in patients with diabetic macular edema. PLoS ONE, 2018, 13, e0206482.	1.1	63
54	CLINICAL AND MOLECULAR GENETIC ANALYSIS OF BEST VITELLIFORM MACULAR DYSTROPHY. Retina, 2009, 29, 835-847.	1.0	62

#	Article	IF	CITATIONS
55	Central Areolar Choroidal Dystrophy (CACD) and Age-Related Macular Degeneration (AMD): Differentiating Characteristics in Multimodal Imaging. , 2011, 52, 8908.		61
56	Association of a Haplotype in the <i>NR3C2</i> Gene, Encoding the Mineralocorticoid Receptor, With Chronic Central Serous Chorioretinopathy. JAMA Ophthalmology, 2017, 135, 446.	1.4	61
57	Development of Refractive Errors—What Can We Learn From Inherited Retinal Dystrophies?. American Journal of Ophthalmology, 2017, 182, 81-89.	1.7	61
58	Foveal Sparing in Stargardt Disease. , 2014, 55, 7467.		60
59	Mutations in MFSD8, Encoding a Lysosomal Membrane Protein, Are Associated with Nonsyndromic Autosomal Recessive Macular Dystrophy. Ophthalmology, 2015, 122, 170-179.	2.5	60
60	Progression of Late-Onset Stargardt Disease. , 2016, 57, 5186.		57
61	Mutations in the Mevalonate Kinase (MVK) Gene Cause Nonsyndromic Retinitis Pigmentosa. Ophthalmology, 2013, 120, 2697-2705.	2.5	56
62	CLINICAL AND GENETIC CHARACTERISTICS OF MALE PATIENTS WITH RPGR-ASSOCIATED RETINAL DYSTROPHIES. Retina, 2019, 39, 1186-1199.	1.0	56
63	Genome-Wide Association Study Reveals Variants in CFH and CFHR4 Associated with Systemic Complement Activation. Ophthalmology, 2018, 125, 1064-1074.	2.5	55
64	Detailed Phenotyping and Therapeutic Strategies for Intronic ABCA4 Variants in Stargardt Disease. Molecular Therapy - Nucleic Acids, 2020, 21, 412-427.	2.3	55
65	Rare Genetic Variants Associated With Development of Age-Related Macular Degeneration. JAMA Ophthalmology, 2016, 134, 287.	1.4	52
66	Measurement and Reproducibility of Preserved Ellipsoid Zone Area and Preserved Retinal Pigment Epithelium Area in Eyes With Choroideremia. American Journal of Ophthalmology, 2017, 179, 110-117.	1.7	51
67	Phenotypic spectrum of autosomal recessive cone-rod dystrophies caused by mutations in the ABCA4 (ABCR) gene. Investigative Ophthalmology and Visual Science, 2002, 43, 1980-5.	3.3	51
68	Mutations in CTNNA1 cause butterfly-shaped pigment dystrophy and perturbed retinal pigment epithelium integrity. Nature Genetics, 2016, 48, 144-151.	9.4	50
69	Morphological and topographical appearance of microaneurysms on optical coherence tomography angiography. British Journal of Ophthalmology, 2019, 103, 630-635.	2.1	50
70	Three families displaying the combination of Stargardt's disease with cone–rod dystrophy or retinitis pigmentosa. Ophthalmology, 2004, 111, 546-553.	2.5	49
71	Role of the Complement System in Chronic Central Serous Chorioretinopathy. JAMA Ophthalmology, 2018, 136, 1128.	1.4	49
72	The Functional Effect of Rare Variants in Complement Genes on C3b Degradation in Patients With Age-Related Macular Degeneration. JAMA Ophthalmology, 2017, 135, 39.	1.4	48

#	Article	IF	CITATIONS
73	Genetic Risk, Lifestyle, and Age-Related Macular Degeneration in Europe. Ophthalmology, 2021, 128, 1039-1049.	2.5	46
74	Intravitreal antisense oligonucleotide sepofarsen in Leber congenital amaurosis type 10: a phase 1b/2 trial. Nature Medicine, 2022, 28, 1014-1021.	15.2	46
75	The ABCA4 2588G>C Stargardt mutation: single origin and increasing frequency from South-West to North-East Europe. European Journal of Human Genetics, 2002, 10, 197-203.	1.4	45
76	Seeing ophthalmologic problems in Parkinson disease. Neurology, 2020, 94, e1539-e1547.	1.5	45
77	Exome Sequencing Extends the Phenotypic Spectrum for ABHD12 Mutations. Ophthalmology, 2014, 121, 1620-1627.	2.5	44
78	Towards Treatment of Stargardt Disease: Workshop Organized and Sponsored by the Foundation Fighting Blindness. Translational Vision Science and Technology, 2017, 6, 6.	1.1	44
79	Focal and Diffuse Chronic Central Serous Chorioretinopathy Treated With Half-Dose Photodynamic Therapy or Subthreshold Micropulse Laser: PLACE Trial Report No. 3. American Journal of Ophthalmology, 2019, 205, 1-10.	1.7	44
80	Half-Dose Photodynamic Therapy Versus Eplerenone in Chronic Central Serous Chorioretinopathy (SPECTRA): A Randomized Controlled Trial. American Journal of Ophthalmology, 2022, 233, 101-110.	1.7	44
81	Integrating Metabolomics, Genomics, and Disease Pathways in Age-Related Macular Degeneration. Ophthalmology, 2020, 127, 1693-1709.	2.5	43
82	Zinc Supplementation Inhibits Complement Activation in Age-Related Macular Degeneration. PLoS ONE, 2014, 9, e112682.	1.1	43
83	The development of central areolar choroidal dystrophy. Graefe's Archive for Clinical and Experimental Ophthalmology, 1996, 234, 87-93.	1.0	42
84	Polymorphisms in Vascular Endothelial Growth Factor Receptor 2 Are Associated with Better Response Rates to Ranibizumab Treatment in Age-related Macular Degeneration. Ophthalmology, 2014, 121, 905-910.	2.5	42
85	Functionally distinct ERAP1 and ERAP2 are a hallmark of HLA-A29-(Birdshot) Uveitis. Human Molecular Genetics, 2018, 27, 4333-4343.	1.4	42
86	Impact of the Common Genetic Associations of Age-Related Macular Degeneration upon Systemic Complement Component C3d Levels. PLoS ONE, 2014, 9, e93459.	1.1	41
87	Comparing half-dose photodynamic therapy with high-density subthreshold micropulse laser treatment in patients with chronic central serous chorioretinopathy (the PLACE trial): study protocol for a randomized controlled trial. Trials, 2015, 16, 419.	0.7	41
88	Genetic Variants and Systemic Complement Activation Levels Are Associated With Serum Lipoprotein Levels in Age-Related Macular Degeneration. , 2015, 56, 7766.		41
89	The Spectrum of Structural and Functional Abnormalities in Female Carriers of Pathogenic Variants in the <i>RPGR</i> Gene. , 2018, 59, 4123.		41
90	A Deep Learning Model for Segmentation of Geographic Atrophy to Study Its Long-Term Natural History. Ophthalmology, 2020, 127, 1086-1096.	2.5	41

#	Article	IF	CITATIONS
91	Nutritional Risk Factors for Age-Related Macular Degeneration. BioMed Research International, 2014, 2014, 1-6.	0.9	39
92	Genome-wide association analyses identify two susceptibility loci for pachychoroid disease central serous chorioretinopathy. Communications Biology, 2019, 2, 468.	2.0	39
93	Development of a Genotype Assay for Age-Related Macular Degeneration. Ophthalmology, 2021, 128, 1604-1617.	2.5	38
94	<i>IMPG2</i> -Associated Retinitis Pigmentosa Displays Relatively Early Macular Involvement. , 2014, 55, 3939.		37
95	Effect of rare coding variants in the CFI gene on Factor I expression levels. Human Molecular Genetics, 2020, 29, 2313-2324.	1.4	37
96	Maternal Uniparental Isodisomy of Chromosome 6 Reveals a TULP1 Mutation as a Novel Cause of Cone Dysfunction. Ophthalmology, 2013, 120, 1239-1246.	2.5	36
97	A Novel Complotype Combination Associates with Age-Related Macular Degeneration and High Complement Activation Levels in vivo. Scientific Reports, 2016, 6, 26568.	1.6	35
98	Whole-Exome Sequencing in Age-Related Macular Degeneration Identifies Rare Variants in COL8A1, a Component of Bruch's Membrane. Ophthalmology, 2018, 125, 1433-1443.	2.5	35
99	Clinical Evaluation of 3 Families With Basal Laminar Drusen Caused by Novel Mutations in the Complement Factor H Gene. JAMA Ophthalmology, 2012, 130, 1038-47.	2.6	34
100	MPZL2, Encoding the Epithelial Junctional Protein Myelin Protein Zero-like 2, Is Essential for Hearing in Man and Mouse. American Journal of Human Genetics, 2018, 103, 74-88.	2.6	34
101	Analysis of Rare Variants in the C3 Gene in Patients with Age-Related Macular Degeneration. PLoS ONE, 2014, 9, e94165.	1.1	34
102	Novel Compound Heterozygous TULP1 Mutations in a Family With Severe Early-Onset Retinitis Pigmentosa. JAMA Ophthalmology, 2007, 125, 932.	2.6	33
103	Common haplotypes at the CFH locus and low-frequency variants in CFHR2 and CFHR5 associate with systemic FHR concentrations and age-related macular degeneration. American Journal of Human Genetics, 2021, 108, 1367-1384.	2.6	33
104	Automatic Identification of Reticular Pseudodrusen Using Multimodal Retinal Image Analysis. Investigative Ophthalmology and Visual Science, 2015, 56, 633-639.	3.3	32
105	Ophthalmic epidemiology in Europe: the "European Eye Epidemiology―(E3) consortium. European Journal of Epidemiology, 2016, 31, 197-210.	2.5	32
106	Association of Sex With Frequent and Mild <i>ABCA4</i> Alleles in Stargardt Disease. JAMA Ophthalmology, 2020, 138, 1035.	1.4	31
107	Whole Exome Sequencing in Patients with the Cuticular Drusen Subtype of Age-Related Macular Degeneration. PLoS ONE, 2016, 11, e0152047.	1.1	31
108	Association of Genetic Variants With Response to Anti–Vascular Endothelial Growth Factor Therapy in Age-Related Macular Degeneration. JAMA Ophthalmology, 2018, 136, 875.	1.4	30

#	Article	IF	CITATIONS
109	Crossover to Photodynamic Therapy or Micropulse Laser After Failure of Primary Treatment of Chronic Central Serous Chorioretinopathy: The REPLACE Trial. American Journal of Ophthalmology, 2020, 216, 80-89.	1.7	30
110	Central areolar choroidal dystrophy associated with dominantly inherited drusen. British Journal of Ophthalmology, 2002, 86, 91-96.	2.1	29
111	The Effect of Light Deprivation in Patients WithÂStargardt Disease. American Journal of Ophthalmology, 2015, 159, 964-972.e2.	1.7	29
112	Carbonic Anhydrase Inhibitors for the Treatment of Cystic Macular Lesions in Children With X-Linked Juvenile Retinoschisis. , 2016, 57, 5143.		29
113	Clinical spectrum of severe chronic central serous chorioretinopathy and outcome of photodynamic therapy. Clinical Ophthalmology, 2018, Volume 12, 2167-2176.	0.9	29
114	X-Linked Retinoschisis. Ophthalmology, 2022, 129, 191-202.	2.5	29
115	Association of Smoking and <i>CFH</i> and <i>ARMS2</i> Risk Variants With Younger Age at Onset of Neovascular Age-Related Macular Degeneration. JAMA Ophthalmology, 2015, 133, 533.	1.4	27
116	A prospective, observational, openâ€label, multicentre study to investigate the daily treatment practice of ranibizumab in patients with neovascular ageâ€related macular degeneration. Acta Ophthalmologica, 2015, 93, 126-133.	0.6	27
117	Mutations in the polyglutamylase gene <i>TTLL5</i> , expressed in photoreceptor cells and spermatozoa, are associated with cone-rod degeneration and reduced male fertility. Human Molecular Genetics, 2016, 25, ddw282.	1.4	27
118	Association analysis of genetic and environmental risk factors in the cuticular drusen subtype of age-related macular degeneration. Molecular Vision, 2012, 18, 2271-8.	1.1	27
119	Whole genome sequencing and in vitro splice assays reveal genetic causes for inherited retinal diseases. Npj Genomic Medicine, 2021, 6, 97.	1.7	27
120	Halfâ€dose photodynamic therapy followed by diode micropulse laser therapy as treatment for chronic central serous chorioretinopathy: evaluation of a prospective treatment protocol. Acta Ophthalmologica, 2016, 94, 187-197.	0.6	26
121	Automatic detection of the foveal center in optical coherence tomography. Biomedical Optics Express, 2017, 8, 5160.	1.5	26
122	Differential Disease Progression in Atrophic Age-Related Macular Degeneration and Late-Onset Stargardt Disease. , 2017, 58, 1001.		26
123	Family-based exome sequencing identifies rare coding variants in age-related macular degeneration. Human Molecular Genetics, 2020, 29, 2022-2034.	1.4	26
124	Late-Onset Stargardt Disease Due to Mild, Deep-Intronic <i>ABCA4</i> Alleles. , 2019, 60, 4249.		25
125	The absence of fundus abnormalities in Stargardt disease. Graefe's Archive for Clinical and Experimental Ophthalmology, 2019, 257, 1147-1157.	1.0	25
126	Foveal Sparing in Central Retinal Dystrophies. , 2019, 60, 3456.		24

#	Article	IF	CITATIONS
127	Association of Hyperreflective Foci Present in Early Forms of Age-Related Macular Degeneration With Known Age-Related Macular Degeneration Risk Polymorphisms. , 2016, 57, 4315.		23
128	Multimodal imaging of the disease progression of birdshot chorioretinopathy. Acta Ophthalmologica, 2016, 94, 815-823.	0.6	23
129	GWAS study using DNA pooling strategy identifies association of variant rs4910623 in OR52B4 gene with anti-VEGF treatment response in age-related macular degeneration. Scientific Reports, 2016, 6, 37924.	1.6	23
130	Risk factors for development and progression of diabetic retinopathy in Dutch patients with type 1 diabetes mellitus. Acta Ophthalmologica, 2018, 96, 459-464.	0.6	23
131	Macular Dystrophy and Cone-Rod Dystrophy Caused by Mutations in the <i>RP1</i> Gene: Extending the <i>RP1</i> Disease Spectrum. , 2019, 60, 1192.		23
132	Elevated Steroid Hormone Levels in Active Chronic Central Serous Chorioretinopathy. , 2019, 60, 3407.		22
133	Longâ€ŧerm outcomes of vitrectomy for proliferative diabetic retinopathy. Acta Ophthalmologica, 2021, 99, 83-89.	0.6	22
134	Lipofuscin-associated photo-oxidative stress during fundus autofluorescence imaging. PLoS ONE, 2017, 12, e0172635.	1.1	22
135	Clinical Characterization of 66 Patients With Congenital Retinal Disease Due to the Deep-Intronic c.2991+1655A>G Mutation in <i>CEP290</i> . , 2018, 59, 4384.		21
136	Metabolomics in serum of patients with non-advanced age-related macular degeneration reveals aberrations in the glutamine pathway. PLoS ONE, 2019, 14, e0218457.	1.1	21
137	Genetic risk score has added value over initial clinical grading stage in predicting disease progression in age-related macular degeneration. Scientific Reports, 2019, 9, 6611.	1.6	21
138	FAMILIAL CENTRAL SEROUS CHORIORETINOPATHY. Retina, 2019, 39, 398-407.	1.0	21
139	Clinical study protocol for a low-interventional study in intermediate age-related macular degeneration developing novel clinical endpoints for interventional clinical trials with a regulatory and patient access intentionâ \in "MACUSTAR. Trials, 2020, 21, 659.	0.7	21
140	Identification of Inherited Retinal Disease-Associated Genetic Variants in 11 Candidate Genes. Genes, 2018, 9, 21.	1.0	20
141	Dominant Cystoid Macular Dystrophy. Ophthalmology, 2015, 122, 180-191.	2.5	19
142	Functional analyses of rare genetic variants in complement component C9 identified in patients with age-related macular degeneration. Human Molecular Genetics, 2018, 27, 2678-2688.	1.4	19
143	Vision-Related Quality of Life in Patients with Diabetic Macular Edema Treated with Intravitreal Aflibercept. Ophthalmology Retina, 2019, 3, 567-575.	1.2	19
144	Analysis of rare variants in the CFH gene in patients with the cuticular drusen subtype of age-related macular degeneration. Molecular Vision, 2015, 21, 285-92.	1.1	19

#	Article	IF	CITATIONS
145	The Phenotypic Course of Age-Related Macular Degeneration for ARMS2/HTRA1. Ophthalmology, 2022, 129, 752-764.	2.5	19
146	Visual Rehabilitation in Chronic Cerebral Blindness: A Randomized Controlled Crossover Study. Frontiers in Neurology, 2016, 7, 92.	1.1	18
147	Genetic screening for macular dystrophies in patients clinically diagnosed with dry ageâ€related macular degeneration. Clinical Genetics, 2018, 94, 569-574.	1.0	18
148	CLINICAL CHARACTERISTICS AND OUTCOME OF POSTERIOR CYSTOID MACULAR DEGENERATION IN CHRONIC CENTRAL SEROUS CHORIORETINOPATHY. Retina, 2020, 40, 1742-1750.	1.0	18
149	CLINICAL CHARACTERISTICS AND NATURAL HISTORY OF RHO-ASSOCIATED RETINITIS PIGMENTOSA. Retina, 2021, 41, 213-223.	1.0	18
150	The efficacy of microarray screening for autosomal recessive retinitis pigmentosa in routine clinical practice. Molecular Vision, 2015, 21, 461-76.	1.1	18
151	Asymmetric Inter-Eye Progression in Stargardt Disease. , 2016, 57, 6824.		17
152	GENETIC RISK FACTORS IN SEVERE, NONSEVERE AND ACUTE PHENOTYPES OF CENTRAL SEROUS CHORIORETINOPATHY. Retina, 2020, 40, 1734-1741.	1.0	17
153	CRB1-Associated Retinal Dystrophies: A Prospective Natural History Study in Anticipation of Future Clinical Trials. American Journal of Ophthalmology, 2022, 234, 37-48.	1.7	17
154	Phenotype Characteristics of Patients With Age-Related Macular Degeneration Carrying a Rare Variant in the Complement Factor H Gene. JAMA Ophthalmology, 2017, 135, 1037.	1.4	16
155	Highly Variable Disease Courses in Siblings with Stargardt Disease. Ophthalmology, 2019, 126, 1712-1721.	2.5	16
156	GENETIC RISK FACTORS IN ACUTE CENTRAL SEROUS CHORIORETINOPATHY. Retina, 2019, 39, 2303-2310.	1.0	16
157	Exome sequencing in families with chronic central serous chorioretinopathy. Molecular Genetics & Genomic Medicine, 2019, 7, e00576.	0.6	15
158	Longâ€ŧerm followâ€up of chronic central serous chorioretinopathy after successful treatment with photodynamic therapy or micropulse laser. Acta Ophthalmologica, 2021, 99, 805-811.	0.6	15
159	The identification of a RNA splice variant in TULP1 in two siblings with earlyâ€onset photoreceptor dystrophy. Molecular Genetics & Genomic Medicine, 2019, 7, e660.	0.6	14
160	RETINAL HYPERREFLECTIVE FOCI IN TYPE 1 DIABETES MELLITUS. Retina, 2020, 40, 1565-1573.	1.0	14
161	Highly sensitive measurements of disease progression in rare disorders: Developing and validating a multimodal model of retinal degeneration in Stargardt disease. PLoS ONE, 2017, 12, e0174020.	1.1	14
162	Homozygous variants in KIAA1549, encoding a ciliary protein, are associated with autosomal recessive retinitis pigmentosa. Journal of Medical Genetics, 2018, 55, 705-712.	1.5	13

#	Article	IF	CITATIONS
163	Patient characteristics of untreated chronic central serous chorioretinopathy patients with focal versus diffuse leakage. Graefe's Archive for Clinical and Experimental Ophthalmology, 2019, 257, 1419-1425.	1.0	13
164	Validation of a model for the prediction of retinopathy in persons with type 1 diabetes. British Journal of Ophthalmology, 2021, 105, 1286-1288.	2.1	13
165	<i>BBS1</i> branchpoint variant is associated with non-syndromic retinitis pigmentosa. Journal of Medical Genetics, 2022, 59, 438-444.	1.5	13
166	Identification of a Complex Allele in <i>IMPG2</i> as a Cause of Adult-Onset Vitelliform Macular Dystrophy. , 2022, 63, 27.		13
167	Efficacy of photodynamic therapy in steroidâ€associated chronic central serous chorioretinopathy: a case–control study. Acta Ophthalmologica, 2016, 94, 565-572.	0.6	12
168	SHORT-TERM FINDINGS ON OPTICAL COHERENCE TOMOGRAPHY AND MICROPERIMETRY IN CHRONIC CENTRAL SEROUS CHORIORETINOPATHY PATIENTS TREATED WITH HALF-DOSE PHOTODYNAMIC THERAPY. Retinal Cases and Brief Reports, 2018, 12, 266-271.	0.3	12
169	Exome sequencing in patients with chronic central serous chorioretinopathy. Scientific Reports, 2019, 9, 6598.	1.6	12
170	Macular spatial distribution of preserved autofluorescence in patients with choroideremia. British Journal of Ophthalmology, 2019, 103, 933-937.	2.1	12
171	Comparing the Efficacy of Bevacizumab and Ranibizumab in Patients with Retinal Vein Occlusion. Ophthalmology Retina, 2020, 4, 576-587.	1.2	12
172	Spectrum of retinal abnormalities in renal transplant patients using chronic low-dose steroids. Graefe's Archive for Clinical and Experimental Ophthalmology, 2017, 255, 2443-2449.	1.0	11
173	Towards seeing the visual impairments in Parkinson's disease: protocol for a multicentre observational, cross-sectional study. BMC Neurology, 2019, 19, 141.	0.8	11
174	Comparing the Efficacy of Bevacizumab andÂRanibizumab in Patients with Diabetic Macular Edema (BRDME). Ophthalmology Retina, 2020, 4, 777-788.	1.2	11
175	Reply to Comment on: Focal and Diffuse Chronic Central Serous Chorioretinopathy Treated With Half-Dose Photodynamic Therapy or Subthreshold Micropulse Laser: PLACE Trial Report No. 3. American Journal of Ophthalmology, 2020, 212, 187-188.	1.7	11
176	Analysis of Risk Alleles and Complement Activation Levels in Familial and Non-Familial Age-Related Macular Degeneration. PLoS ONE, 2016, 11, e0144367.	1.1	11
177	Undetected ophthalmological disorders in Parkinson's disease. Journal of Neurology, 2022, 269, 3821-3832.	1.8	11
178	Pathogenic variants in <i>IMPG1</i> cause autosomal dominant and autosomal recessive retinitis pigmentosa. Journal of Medical Genetics, 2021, 58, 570-578.	1.5	10
179	Major Predictive Factors for Progression of Early to Late Age-Related Macular Degeneration. Ophthalmologica, 2020, 243, 444-452.	1.0	10
180	Defining inclusion criteria and endpoints for clinical trials: a prospective crossâ€sectional study in <i>CRB1</i> â€associated retinal dystrophies. Acta Ophthalmologica, 2021, 99, e402-e414.	0.6	10

#	Article	IF	CITATIONS
181	Stargardt disease: monitoring incidence and diagnostic trends in the Netherlands using a nationwide disease registry. Acta Ophthalmologica, 2022, 100, 395-402.	0.6	10
182	Tissueâ€specific genotype–phenotype correlations among USH2Aâ€related disorders in the RUSH2A study. Human Mutation, 2022, 43, 613-624.	1.1	10
183	Clinical Characteristics of Familial and Sporadic Age-Related Macular Degeneration: Differences and Similarities. , 2014, 55, 7085.		9
184	Alteration of retinal layers in healthy subjects over 60 years of age until nonagenarians. Clinical Ophthalmology, 2017, Volume 11, 1499-1503.	0.9	9
185	Functional Analysis of Variants in Complement Factor I Identified in Age-Related Macular Degeneration and Atypical Hemolytic Uremic Syndrome. Frontiers in Immunology, 2021, 12, 789897.	2.2	9
186	Imaging diabetic retinal disease: clinical imaging requirements. Acta Ophthalmologica, 2022, 100, 752-762.	0.6	9
187	Automatic differentiation of color fundus images containing drusen or exudates using a contextual spatial pyramid approach. Biomedical Optics Express, 2016, 7, 709.	1.5	8
188	Variants in the PRPF8 Gene are Associated with Glaucoma. Molecular Neurobiology, 2018, 55, 4504-4510.	1.9	8
189	Association of plasma trace element levels with neovascular age-related macular degeneration. Experimental Eye Research, 2020, 201, 108324.	1.2	8
190	RESPONSE OF CHOROIDAL ABNORMALITIES TO PHOTODYNAMIC THERAPY VERSUS MICROPULSE LASER IN CHRONIC CENTRAL SEROUS CHORIORETINOPATHY. Retina, 2021, 41, 2122-2131.	1.0	8
191	The Natural History of Leber Congenital Amaurosis and Cone–Rod Dystrophy Associated with Variants in the GUCY2D Gene. Ophthalmology Retina, 2022, 6, 711-722.	1.2	8
192	Genetics of Unilateral and Bilateral Age-Related Macular Degeneration Severity Stages. PLoS ONE, 2016, 11, e0156778.	1.1	7
193	The Phenotypic Spectrum of Patients with PHARC Syndrome Due to Variants in ABHD12: An Ophthalmic Perspective. Genes, 2021, 12, 1404.	1.0	7
194	EFFICACY OF HALF-DOSE PHOTODYNAMIC THERAPY VERSUS HIGH-DENSITY SUBTHRESHOLD MICROPULSE LASER FOR TREATING PIGMENT EPITHELIAL DETACHMENTS IN CHRONIC CENTRAL SEROUS CHORIORETINOPATHY. Retina, 2022, 42, 721-729.	1.0	7
195	Dosing Regimens of Intravitreal Aflibercept for Diabetic Macular Edema Beyond the First Year: VIOLET, a Prospective Randomized Trial. Advances in Therapy, 2022, 39, 2701-2716.	1.3	7
196	Impact of motion-associated noise on intrinsic optical signal imaging in humans with optical coherence tomography. Biomedical Optics Express, 2015, 6, 1632.	1.5	6
197	Outcome of half-dose photodynamic therapy in chronic central serous chorioretinopathy with fovea-involving atrophy. Graefe's Archive for Clinical and Experimental Ophthalmology, 2021, 259, 905-910.	1.0	6
198	Evaluating the Occurrence of Rare Variants in the Complement Factor H Gene in Patients With Early-Onset Drusen Maculopathy. JAMA Ophthalmology, 2021, 139, 1218.	1.4	6

#	Article	IF	CITATIONS
199	Phenotype Characteristics of Fellow Eyes in Patients With Early Onset of Neovascular Age-Related Macular Degeneration. , 2015, 56, 7269.		5
200	Identifying Predictors of Anti-VEGF Treatment Response in Patients with Neovascular Age-Related Macular Degeneration through Discriminant and Principal Component Analysis. Ophthalmic Research, 2017, 58, 49-55.	1.0	5
201	Identification of TP53BP2 as a Novel Candidate Gene for Primary Open Angle Glaucoma by Whole Exome Sequencing in a Large Multiplex Family. Molecular Neurobiology, 2018, 55, 1387-1395.	1.9	5
202	Aberrant leukocyte telomere length in Birdshot Uveitis. PLoS ONE, 2017, 12, e0176175.	1.1	5
203	Semi-Quantitative Multiplex Profiling of the Complement System Identifies Associations of Complement Proteins with Genetic Variants and Metabolites in Age-Related Macular Degeneration. Journal of Personalized Medicine, 2021, 11, 1256.	1.1	5
204	Scrutinizing pathogenicity of the USH2A c.2276 G > T; p.(Cys759Phe) variant. Npj Genomic Medi 2022, 7, .	cine, 1.7	5
205	Neovascular age-related macular degeneration without drusen in the fellow eye: clinical spectrum and therapeutic outcome. Clinical Ophthalmology, 2017, Volume 11, 63-70.	0.9	4
206	Challenges, facilitators and barriers to screening study participants in early disease stages-experience from the MACUSTAR study. BMC Medical Research Methodology, 2021, 21, 54.	1.4	4
207	Systemic complement activation levels in Stargardt disease. PLoS ONE, 2021, 16, e0253716.	1.1	4
208	Long-read technologies identify a hidden inverted duplication in a family with choroideremia. Human Genetics and Genomics Advances, 2021, 2, 100046.	1.0	4
209	Geographic distribution of rare variants associated with age-related macular degeneration. Molecular Vision, 2018, 24, 75-82.	1.1	4
210	Generation and characterization of human induced pluripotent stem cells (iPSCs) from three patients with age-related macular degeneration carrying rare variants in the CFH gene. Stem Cell Research, 2022, 60, 102669.	0.3	4
211	Spontaneous Resolution of Chronic Central Serous Chorioretinopathy: "Fuji Sign― Ophthalmology Retina, 2022, 6, 861-863.	1.2	4
212	Reply. Ophthalmology, 2015, 122, e60.	2.5	3
213	Tackling the Challenges of Product Development Through a Collaborative Rare Disease Network: The Foundation Fighting Blindness Consortium. Translational Vision Science and Technology, 2021, 10, 23.	1.1	3
214	Validated Filter-Based Photoreceptor Count Algorithm on Retinal Heidelberg High Magnification Moduleâ"¢ Images in Healthy and Pathological Conditions. Applied Sciences (Switzerland), 2021, 11, 5347.	1.3	3
215	Evaluation of Local Rod and Cone Function in Stargardt Disease. , 2022, 63, 6.		3
216	Correlation of Morphology and Function of Flecks Using Short-Wave Fundus Autofluorescence and Microperimetry in Patients With Stargardt Disease. Translational Vision Science and Technology, 2021, 10, 18.	1.1	2

#	Article	IF	CITATIONS
217	The Many Faces of Blurry Vision in Parkinson's Disease: An Illustrative Case Series. Case Reports in Neurology, 2022, 14, 173-178.	0.3	2
218	Achieving balance in the treatment and monitoring of neovascular ageâ€related macular degeneration in the real world: lessons from the Netherlands cohort of the AURA study. Acta Ophthalmologica, 2019, 97, e323-e324.	0.6	1
219	Stargardt Disease. , 2016, , 25-30.		1
220	Generation and characterization of human induced pluripotent stem cells (iPSCs) from three individuals without age-related macular degeneration. Stem Cell Research, 2022, 60, 102670.	0.3	1
221	Switching to aflibercept in patients with neovascular ageâ€related macular degeneration not responding to bevacizumab: a pilot study. Acta Ophthalmologica, 2017, 95, e426-e427.	0.6	0
222	Reply. Ophthalmology, 2019, 126, e30-e31.	2.5	0
223	Reply. Ophthalmology, 2019, 126, e11.	2.5	0
224	Charles Bonnet syndrome in patients with Stargardt disease: prevalence and risk factors. British Journal of Ophthalmology, 2021, , bjophthalmol-2021-319525.	2.1	0
225	Macular Changes in Generalized Retinal Dystrophies and in Cone Dystrophies. , 2016, , 31-38.		0
226	Genetic and environmental risk factors for extramacular drusen. Molecular Vision, 2020, 26, 661-669.	1.1	0
227	Increased pro-MMP9 plasma levels are associated with neovascular age-related macular degeneration and with the risk allele of rs142450006 near. Molecular Vision, 2021, 27, 142-150.	1.1	0
228	Generation of an iPSC line (SCTCi015-A) and isogenic control line (SCTCi015-A-1) from an age-related macular degeneration patient carrying the variant c.355G>A in the CFI gene. Stem Cell Research, 2022, 62, 102796.	0.3	0
229	Generation of an iPSC line (SCTCi014-A) and isogenic control line (SCTCi014-A-1) from an age-related macular degeneration patient carrying the variant c.355G>A in the CFI gene. Stem Cell Research, 2022, 62, 102797.	0.3	0