
Robert Vassar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3045782/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of mTORC1 activation in seizure-induced exacerbation of Alzheimer's disease. Brain, 2022, 145, 324-339.	3.7	15
2	Oral nimodipine treatment has no effect on amyloid pathology or neuritic dystrophy in the 5XFAD mouse model of amyloidosis. PLoS ONE, 2022, 17, e0263332.	1.1	7
3	Poloxamer-188 Exacerbates Brain Amyloidosis, Presynaptic Dystrophies, and Pathogenic Microglial Activation in 5XFAD Mice. Current Alzheimer Research, 2022, 19, 317-329.	0.7	1
4	The β-Secretase BACE1 in Alzheimer's Disease. Biological Psychiatry, 2021, 89, 745-756.	0.7	336
5	Early detection and personalized medicine: Future strategies against Alzheimer's disease. Progress in Molecular Biology and Translational Science, 2021, 177, 157-173.	0.9	9
6	Novel Alzheimer Disease Risk Loci and Pathways in African American Individuals Using the African Genome Resources Panel. JAMA Neurology, 2021, 78, 102.	4.5	144
7	Pregabalin Treatment does not Affect Amyloid Pathology in 5XFAD Mice. Current Alzheimer Research, 2021, 18, 283-297.	0.7	3
8	The case for low-level BACE1 inhibition for the prevention of Alzheimer disease. Nature Reviews Neurology, 2021, 17, 703-714.	4.9	65
9	Contribution of GABAergic interneurons to amyloid-Î ² plaque pathology in an APP knock-in mouse model. Molecular Neurodegeneration, 2020, 15, 3.	4.4	26
10	Aβ-accelerated neurodegeneration caused by Alzheimer's-associated <i>ACE</i> variant R1279Q is rescued by angiotensin system inhibition in mice. Science Translational Medicine, 2020, 12, .	5.8	22
11	The innate immunity protein IFITM3 modulates γ-secretase in Alzheimer's disease. Nature, 2020, 586, 735-740.	13.7	219
12	RPS23RG1 May Prevent Ubiquitin-Proteosomal Degradation of Postsynaptic Densities-93 and -95 to Protect Synaptic Function: Implications for Alzheimer's Disease. Biological Psychiatry, 2019, 86, 164-166.	0.7	0
13	Death by microglia. Journal of Experimental Medicine, 2019, 216, 2451-2452.	4.2	2
14	Modeling genetic diversity in Alzheimer's disease. Lab Animal, 2019, 48, 87-88.	0.2	1
15	3K3A-activated protein C blocks amyloidogenic BACE1 pathway and improves functional outcome in mice. Journal of Experimental Medicine, 2019, 216, 279-293.	4.2	55
16	BACE1 Mediates HIV-Associated and Excitotoxic Neuronal Damage Through an APP-Dependent Mechanism. Journal of Neuroscience, 2018, 38, 4288-4300.	1.7	31
17	ER stress is not elevated in the 5XFAD mouse model of Alzheimer's disease. Journal of Biological Chemistry, 2018, 293, 18434-18443.	1.6	37
18	A promising, novel, and unique <scp>BACE</scp> 1 inhibitor emerges in the quest to prevent Alzheimer's disease. EMBO Molecular Medicine, 2018, 10, .	3.3	28

#	Article	IF	CITATIONS
19	Axonal organization defects in the hippocampus of adult conditional BACE1 knockout mice. Science Translational Medicine, 2018, 10, .	5.8	66
20	Quantitative Comparison of Dense-Core Amyloid Plaque Accumulation in Amyloid-β Protein Precursor Transgenic Mice. Journal of Alzheimer's Disease, 2017, 56, 743-761.	1.2	39
21	HIV Protease Inhibitors Alter Amyloid Precursor Protein Processing via β-Site Amyloid Precursor Protein Cleaving Enzyme-1 Translational Up-Regulation. American Journal of Pathology, 2017, 187, 91-109.	1.9	29
22	<scp>APP</scp> mouse models for Alzheimer's disease preclinical studies. EMBO Journal, 2017, 36, 2473-2487.	3.5	530
23	Identification of natural products with neuronal and metabolic benefits through autophagy induction. Autophagy, 2017, 13, 41-56.	4.3	61
24	A Becn1 mutation mediates hyperactive autophagic sequestration of amyloid oligomers and improved cognition in Alzheimer's disease. PLoS Genetics, 2017, 13, e1006962.	1.5	120
25	Seeds of Destruction: New Mechanistic Insights into the Role of Apolipoprotein E4 in Alzheimer's Disease. Neuron, 2017, 96, 953-955.	3.8	4
26	BACE1 inhibition as a therapeutic strategy for Alzheimer's disease. Journal of Sport and Health Science, 2016, 5, 388-390.	3.3	24
27	Presynaptic dystrophic neurites surrounding amyloid plaques are sites of microtubule disruption, BACE1 elevation, and increased Aβ generation in Alzheimer's disease. Acta Neuropathologica, 2016, 132, 235-256.	3.9	193
28	Inhibiting BACE1 to reverse synaptic dysfunctions in Alzheimer's disease. Neuroscience and Biobehavioral Reviews, 2016, 65, 326-340.	2.9	58
29	Astrocytes from old Alzheimer's disease mice are impaired in Aβ uptake and in neuroprotection. Neurobiology of Disease, 2016, 96, 84-94.	2.1	85
30	Murine versus human apolipoprotein E4: differential facilitation of and co-localization in cerebral amyloid angiopathy and amyloid plaques in APP transgenic mouse models. Acta Neuropathologica Communications, 2015, 3, 70.	2.4	45
31	Aβ reduction in BACE1 heterozygous null 5XFAD mice is associated with transgenic APP level. Molecular Neurodegeneration, 2015, 10, 1.	4.4	146
32	Genetic Inhibition of Phosphorylation of the Translation Initiation Factor eIF2α Does Not Block Aβ-Dependent Elevation of BACE1 and APP Levels or Reduce Amyloid Pathology in a Mouse Model of Alzheimer's Disease. PLoS ONE, 2014, 9, e101643.	1.1	31
33	Axonal BACE1 dynamics and targeting in hippocampal neurons: a role for Rab11 GTPase. Molecular Neurodegeneration, 2014, 9, 1.	4.4	130
34	Function, therapeutic potential and cell biology of <scp>BACE</scp> proteases: current status and future prospects. Journal of Neurochemistry, 2014, 130, 4-28.	2.1	269
35	Molecular neurodegeneration: basic biology and disease pathways. Molecular Neurodegeneration, 2014, 9, 34.	4.4	4
36	BACE1 inhibitor drugs in clinical trials for Alzheimer's disease. Alzheimer's Research and Therapy, 2014, 6, 89.	3.0	322

#	Article	IF	CITATIONS
37	Increased mtDNA mutations with aging promotes amyloid accumulation and brain atrophy in the APP/Ld transgenic mouse model of Alzheimer's disease. Molecular Neurodegeneration, 2014, 9, 16.	4.4	54
38	Targeting the β secretase BACE1 for Alzheimer's disease therapy. Lancet Neurology, The, 2014, 13, 319-329.	4.9	527
39	The Normal and Pathologic Roles of the Alzheimer's β-secretase, BACE1. Current Alzheimer Research, 2014, 11, 441-449.	0.7	40
40	Neuron loss in the 5XFAD mouse model of Alzheimer's disease correlates with intraneuronal Aβ42 accumulation and Caspase-3 activation. Molecular Neurodegeneration, 2013, 8, 2.	4.4	278
41	The Alzheimer's β-secretase BACE1 localizes to normal presynaptic terminals and to dystrophic presynaptic terminals surrounding amyloid plaques. Acta Neuropathologica, 2013, 126, 329-352.	3.9	190
42	A Function for EHD Family Proteins in Unidirectional Retrograde Dendritic Transport of BACE1 and Alzheimer's Disease Al² Production. Cell Reports, 2013, 5, 1552-1563.	2.9	65
43	ADAM10 Prodomain Mutations Cause Late-Onset Alzheimer's Disease: Not Just the Latest FAD. Neuron, 2013, 80, 250-253.	3.8	26
44	PL-04-01: Targeting beta-secretase. , 2013, 9, P677-P677.		0
45	Molecular Differences and Similarities between Alzheimer's Disease and the 5XFAD Transgenic Mouse Model of Amyloidosis. Biochemistry Insights, 2013, 6, BCI.S13025.	3.3	48
46	Elevated Aβ42 in Aged, Non-demented Individuals with Cerebral Atherosclerosis. Current Alzheimer Research, 2013, 10, 785-789.	0.7	14
47	β-Site Amyloid Precursor Protein (APP)-cleaving Enzyme 1 (BACE1)-deficient Mice Exhibit a Close Homolog of L1 (CHL1) Loss-of-function Phenotype Involving Axon Guidance Defects. Journal of Biological Chemistry, 2012, 287, 38408-38425.	1.6	134
48	Cdk5 Protein Inhibition and Aβ42 Increase BACE1 Protein Level in Primary Neurons by a Post-transcriptional Mechanism. Journal of Biological Chemistry, 2012, 287, 7224-7235.	1.6	56
49	Identification and biology of $\hat{l}^2 \hat{a} \in s$ ecretase. Journal of Neurochemistry, 2012, 120, 55-61.	2.1	73
50	The β-secretase enzyme BACE1 as a therapeutic target for Alzheimer's disease. Alzheimer's Research and Therapy, 2011, 3, 20.	3.0	109
51	The Alzheimer's Î ² -secretase enzyme BACE1 is required for accurate axon guidance of olfactory sensory neurons and normal glomerulus formation in the olfactory bulb. Molecular Neurodegeneration, 2011, 6, 88.	4.4	95
52	Amyloid-β42 alters apolipoprotein E solubility in brains of mice with five familial AD mutations. Journal of Neuroscience Methods, 2011, 196, 51-59.	1.3	58
53	BACE1-/- mice exhibit seizure activity that does not correlate with sodium channel level or axonal localization. Molecular Neurodegeneration, 2010, 5, 31.	4.4	85
54	The secretases: enzymes with therapeutic potential in Alzheimer disease. Nature Reviews Neurology, 2010, 6, 99-107.	4.9	702

#	Article	IF	CITATIONS
55	Alzheimer Disease AÎ ² Production in the Absence of S-Palmitoylation-dependent Targeting of BACE1 to Lipid Rafts. Journal of Biological Chemistry, 2009, 284, 3793-3803.	1.6	137
56	Linking vascular disorders and Alzheimer's disease: Potential involvement of BACE1. Neurobiology of Aging, 2009, 30, 1535-1544.	1.5	35
57	The β-Secretase Enzyme BACE in Health and Alzheimer's Disease: Regulation, Cell Biology, Function, and Therapeutic Potential. Journal of Neuroscience, 2009, 29, 12787-12794.	1.7	498
58	Phosphorylation of the Translation Initiation Factor eIF2α Increases BACE1 Levels and Promotes Amyloidogenesis. Neuron, 2008, 60, 988-1009.	3.8	383
59	X11 Proteins Regulate the Translocation of Amyloid β-Protein Precursor (APP) into Detergent-resistant Membrane and Suppress the Amyloidogenic Cleavage of APP by β-Site-cleaving Enzyme in Brain. Journal of Biological Chemistry, 2008, 283, 35763-35771.	1.6	60
60	The Role of Amyloid Precursor Protein Processing by BACE1, the β-Secretase, in Alzheimer Disease Pathophysiology. Journal of Biological Chemistry, 2008, 283, 29621-29625.	1.6	218
61	BACE1 Structure and Function in Health and Alzheimers Disease. Current Alzheimer Research, 2008, 5, 100-120.	0.7	87
62	Â-Site Amyloid Precursor Protein Cleaving Enzyme 1 Levels Become Elevated in Neurons around Amyloid Plaques: Implications for Alzheimer's Disease Pathogenesis. Journal of Neuroscience, 2007, 27, 3639-3649.	1.7	333
63	Involvement of -site APP cleaving enzyme 1 (BACE1) in amyloid precursor protein-mediated enhancement of memory and activity-dependent synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8167-8172.	3.3	107
64	Caspase-3 Cleavage of GGA3 Stabilizes BACE: Implications for Alzheimer's Disease. Neuron, 2007, 54, 671-673.	3.8	26
65	The Alzheimer's disease Beta-secretase enzyme, BACE1. Molecular Neurodegeneration, 2007, 2, 22.	4.4	386
66	BACE1 gene deletion prevents neuron loss and memory deficits in 5XFAD APP/PS1 transgenic mice. Neurobiology of Disease, 2007, 26, 134-145.	2.1	272
67	Temporal memory deficits in Alzheimer's mouse models: rescue by genetic deletion of BACE1. European Journal of Neuroscience, 2006, 23, 251-260.	1.2	256
68	Intraneuronal beta-Amyloid Aggregates, Neurodegeneration, and Neuron Loss in Transgenic Mice with Five Familial Alzheimer's Disease Mutations: Potential Factors in Amyloid Plaque Formation. Journal of Neuroscience, 2006, 26, 10129-10140.	1.7	2,607
69	β-Secretase, APP and Aβ in Alzheimer's Disease. , 2005, , 79-103.		49
70	Energy Inhibition Elevates Â-Secretase Levels and Activity and Is Potentially Amyloidogenic in APP Transgenic Mice: Possible Early Events in Alzheimer's Disease Pathogenesis. Journal of Neuroscience, 2005, 25, 10874-10883.	1.7	235
71	Statins Cause Intracellular Accumulation of Amyloid Precursor Protein, β-Secretase-cleaved Fragments, and Amyloid β-Peptide via an Isoprenoid-dependent Mechanism. Journal of Biological Chemistry, 2005, 280, 18755-18770.	1.6	133
72	β-Amyloid-induced Dynamin 1 Depletion in Hippocampal Neurons. Journal of Biological Chemistry, 2005, 280, 31746-31753.	1.6	114

#	Article	IF	CITATIONS
73	beta-Secretase, APP and Abeta in Alzheimer's disease. Sub-Cellular Biochemistry, 2005, 38, 79-103.	1.0	19
74	BACE1: The β-Secretase Enzyme in Alzheimer's Disease. Journal of Molecular Neuroscience, 2004, 23, 105-114.	1.1	314
75	BACE1 Deficiency Rescues Memory Deficits and Cholinergic Dysfunction in a Mouse Model of Alzheimer's Disease. Neuron, 2004, 41, 27-33.	3.8	506
76	BACE1 (β-secretase) knockout mice do not acquire compensatory gene expression changes or develop neural lesions over time. Neurobiology of Disease, 2003, 14, 81-88.	2.1	160
77	Anti-Inflammatory Drug Therapy Alters β-Amyloid Processing and Deposition in an Animal Model of Alzheimer's Disease. Journal of Neuroscience, 2003, 23, 7504-7509.	1.7	473
78	β-Secretase (BACE) as a drug target for alzheimer's disease. Advanced Drug Delivery Reviews, 2002, 54, 1589-1602.	6.6	197
79	The β-Secretase, BACE: A Prime Drug Target for Alzheimer's Disease. Journal of Molecular Neuroscience, 2001, 17, 157-170.	1.1	158
80	Mice deficient in BACE1, the Alzheimer's β-secretase, have normal phenotype and abolished β-amyloid generation. Nature Neuroscience, 2001, 4, 231-232.	7.1	978
81	Characterization of Alzheimer's β-Secretase Protein BACE. Journal of Biological Chemistry, 2000, 275, 21099-21106.	1.6	208
82	Expression Analysis of BACE2 in Brain and Peripheral Tissues. Journal of Biological Chemistry, 2000, 275, 20647-20651.	1.6	264
83	AÎ ² -Generating Enzymes. Neuron, 2000, 27, 419-422.	3.8	311
84	A Furin-like Convertase Mediates Propeptide Cleavage of BACE, the Alzheimer's β-Secretase. Journal of Biological Chemistry, 2000, 275, 37712-37717.	1.6	234
85	Topographic organization of sensory projections to the olfactory bulb. Cell, 1994, 79, 981-991.	13.5	1,172
86	Spatial segregation of odorant receptor expression in the mammalian olfactory epithelium. Cell, 1993, 74, 309-318.	13.5	811
87	Mutant keratin expression in transgenic mice causes marked abnormalities resembling a human genetic skin disease. Cell, 1991, 64, 365-380.	13.5	425