Jia-Yu Wan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3045739/publications.pdf

Version: 2024-02-01

		567281	642732
33	596	15	23 g-index
papers	citations	h-index	g-index
35	35	35	568
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Electrochemical biosensor for detecting pathogenic bacteria based on a hybridization chain reaction and CRISPR-Cas12a. Analytical and Bioanalytical Chemistry, 2022, 414, 1073-1080.	3.7	32
2	Point-of-care detection of pathogenic bacteria based on pregnancy test strips and metal–organic frameworks. Microchemical Journal, 2022, 175, 107142.	4.5	11
3	Dual Aptamer-Copper (II) Phosphate Nanocomposite-Based Point-of-Care Biosensor for the Determination of <i>Escherichia coli</i> O157:H7 through Pressure Monitoring with a Hand-Held Barometer. Analytical Letters, 2021, 54, 1603-1615.	1.8	6
4	An electrochemical biosensor for the detection of pathogenic bacteria based on dual signal amplification of Cu ₃ (PO ₄) ₂ -mediated click chemistry and DNAzymes. Analyst, The, 2021, 146, 4841-4847.	3.5	14
5	A Colorimetric Immunosensor Based on Hemin@MI Nanozyme Composites, with Peroxidase-like Activity for Point-of-care Testing of Pathogenic E. coli O157:H7. Analytical Sciences, 2021, 37, 941-947.	1.6	3
6	Ultrasensitive detection of pathogenic bacteria by CRISPR/Cas12a coupling with a primer exchange reaction. Sensors and Actuators B: Chemical, 2021, 347, 130630.	7.8	48
7	Visual assay of <i>Escherichia coli</i> O157:H7 based on an isothermal strand displacement and hybrid chain reaction amplification strategy. Analytical Methods, 2021, 13, 3379-3385.	2.7	8
8	CRISPR/Cas12a and immuno-RCA based electrochemical biosensor for detecting pathogenic bacteria. Journal of Electroanalytical Chemistry, 2021, 901, 115755.	3.8	36
9	Recombinant Ricin Toxin Binding Subunit B (RTB) Stimulates Production of TNF-α by Mouse Macrophages Through Activation of TLR4 Signaling Pathway. Frontiers in Pharmacology, 2020, 11, 526129.	3.5	4
10	Ferrocene-functionalized nanocomposites as signal amplification probes for electrochemical immunoassay of Salmonella typhimurium. Mikrochimica Acta, 2020, 187, 600.	5.0	17
11	Immunoassay for foodborne pathogenic bacteria using magnetic composites Ab@Fe3O4, signal composites Ap@PtNp, and thermometer readings. Mikrochimica Acta, 2020, 187, 679.	5.0	8
12	An electrochemical aptasensor based on cocoon-like DNA nanostructure signal amplification for the detection of <i>Escherichia coli</i> i> O157:H7. Analyst, The, 2020, 145, 7340-7348.	3.5	30
13	A sensitive biosensor for determination of pathogenic bacteria using aldehyde dehydrogenase signaling system. Analytical and Bioanalytical Chemistry, 2020, 412, 7955-7962.	3.7	3
14	An electrochemical biosensor based on methylene blue-loaded nanocomposites as signal-amplifying tags to detect pathogenic bacteria. Analyst, The, 2020, 145, 4328-4334.	3.5	35
15	16S rRNAâ€functionalized multiâ€HCR concatemers in a signal amplification nanostructure for visual detection of Salmonella. Biotechnology and Applied Biochemistry, 2020, 68, 560-567.	3.1	3
16	Sandwich immunoassay based on antimicrobial peptide-mediated nanocomposite pair for determination of Escherichia coli O157:H7 using personal glucose meter as readout. Mikrochimica Acta, 2020, 187, 220.	5.0	16
17	Point-of-care detection of 16S rRNA of Staphylococcus aureus based on multiple biotin-labeled DNA probes. Molecular and Cellular Probes, 2019, 47, 101427.	2.1	5
18	Integrative transcriptomics, proteomics, and metabolomics data analysis exploring the injury mechanism of ricin on human lung epithelial cells. Toxicology in Vitro, 2019, 60, 160-172.	2.4	8

#	Article	IF	CITATIONS
19	Immunoassay for pathogenic bacteria using platinum nanoparticles and a hand-held hydrogen detector as transducer. Application to the detection of Escherichia coli O157:H7. Mikrochimica Acta, 2019, 186, 296.	5.0	26
20	Integration of transcriptomics, proteomics and metabolomics data to reveal the biological mechanisms of abrin injury in human lung epithelial cells. Toxicology Letters, 2019, 312, 1-10.	0.8	11
21	Point-of-care assay to detect foodborne pathogenic bacteria using a low-cost disposable medical infusion extension line as readout and MnO2 nanoflowers. Food Control, 2019, 98, 399-404.	5.5	22
22	Disposable syringe-based visual immunotest for pathogenic bacteria based on theÂcatalase mimicking activity of platinum nanoparticle-concanavalin A hybrid nanoflowers. Mikrochimica Acta, 2019, 186, 57.	5.0	23
23	Colorimetric detection of microRNA based on DNAzyme and nuclease-assisted catalytic hairpin assembly signal amplification. Molecular and Cellular Probes, 2018, 38, 13-18.	2.1	31
24	Modified beacon probe assisted dual signal amplification for visual detection of microRNA. Analytical Biochemistry, 2018, 550, 68-71.	2.4	8
25	A pregnancy test strip for detection of pathogenic bacteria by using concanavalin A-human chorionic gonadotropin-Cu3(PO4)2 hybrid nanoflowers, magnetic separation, and smartphone readout. Mikrochimica Acta, 2018, 185, 464.	5.0	21
26	Hemin-incorporated nanoflowers as enzyme mimics for colorimetric detection of foodborne pathogenic bacteria. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3802-3807.	2.2	41
27	Colorimetric detection of microRNA based hybridization chain reaction for signal amplification and enzyme for visualization. Analytical Biochemistry, 2017, 528, 7-12.	2.4	46
28	Visual detection of nucleic acids based on lateral flow biosensor and hybridization chain reaction amplification. Talanta, 2017, 164, 432-438.	5. 5	35
29	Lateral flow nucleic acid biosensor for sensitive detection of microRNAs based on the dual amplification strategy of duplex-specific nuclease and hybridization chain reaction. PLoS ONE, 2017, 12, e0185091.	2.5	20
30	Catabolite control protein A has an important role in the metabolic regulation of Streptococcus suis type 2 according to iTRAQ-based quantitative proteomic analysis. Molecular Medicine Reports, 2015, 12, 5967-5972.	2.4	2
31	Catabolite control protein A is an important regulator of metabolism in Streptococcus suis type 2. Biomedical Reports, 2014, 2, 709-712.	2.0	7
32	Proteomic Study of Differential Protein Expression in Mouse Lung Tissues after Aerosolized Ricin Poisoning. International Journal of Molecular Sciences, 2014, 15, 7281-7292.	4.1	9
33	Polymorphism of prion protein gene in Arctic fox (Vulpes lagopus). Molecular Biology Reports, 2009, 36, 1299-1303.	2.3	4