Marcella Trombetta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3045280/publications.pdf

Version: 2024-02-01

105 papers 5,269 citations

43 h-index 70 g-index

108 all docs 108 docs citations

108 times ranked 7925 citing authors

#	Article	IF	CITATIONS
1	A Soft Zwitterionic Hydrogel as Potential Coating on a Polyimide Surface to Reduce Foreign Body Reaction to Intraneural Electrodes. Molecules, 2022, 27, 3126.	3.8	6
2	Graphene-laden hydrogels: A strategy for thermally triggered drug delivery. Materials Science and Engineering C, $2021, 118, 111353$.	7.3	22
3	Quercetin and hydroxytyrosol as modulators of hepatic steatosis: A NAFLDâ€onâ€aâ€chip study. Biotechnology and Bioengineering, 2021, 118, 142-152.	3.3	12
4	Nano-encapsulation of hydroxytyrosol into formulated nanogels improves therapeutic effects against hepatic steatosis: An in vitro study. Materials Science and Engineering C, 2021, 124, 112080.	7.3	12
5	Enhanced Medical and Community Face Masks with Antimicrobial Properties: A Systematic Review. Journal of Clinical Medicine, 2021, 10, 4066.	2.4	8
6	Additive manufacturing of biomaterials. Advances in Chemical Engineering, 2021, , 233-260.	0.9	0
7	CytoMatrix for a reliable and simple characterization of lung cancer stem cells from malignant pleural effusions. Journal of Cellular Physiology, 2020, 235, 1877-1887.	4.1	29
8	Biofabrication of Hepatic Constructs by 3D Bioprinting of a Cell‣aden Thermogel: An Effective Tool to Assess Drugâ€Induced Hepatotoxic Response. Advanced Healthcare Materials, 2020, 9, e2001163.	7.6	41
9	Morphological and Molecular Assessment in Thyroid Cytology Using Cell-Capturing Scaffolds. Hormone and Metabolic Research, 2020, 52, 803-808.	1.5	2
10	EGFR/ErbB Inhibition Promotes OPC Maturation up to Axon Engagement by Co-Regulating PIP2 and MBP. Cells, 2019, 8, 844.	4.1	10
11	The long-term follow-up of large-diameter Dacron $\hat{A}^{@}$ vascular grafts in surgical practice: a review. Journal of Cardiovascular Surgery, 2019, 60, 501-513.	0.6	14
12	Electric Field Assisted Microfluidic Platform for Generation of Tailorable Porous Microbeads as Cell Carriers for Tissue Engineering. Advanced Functional Materials, 2018, 28, 1800874.	14.9	32
13	Biomechanical Characterization at the Cell Scale: Present and Prospects. Frontiers in Physiology, 2018, 9, 1449.	2.8	59
14	Electrospun Nanomaterials Implementing Antibacterial Inorganic Nanophases. Applied Sciences (Switzerland), 2018, 8, 1643.	2.5	37
15	Energy Harvesting: Electric Field Assisted Microfluidic Platform for Generation of Tailorable Porous Microbeads as Cell Carriers for Tissue Engineering (Adv. Funct. Mater. 20/2018). Advanced Functional Materials, 2018, 28, 1870133.	14.9	4
16	Surface functionalization of polyurethane scaffolds mimicking the myocardial microenvironment to support cardiac primitive cells. PLoS ONE, 2018, 13, e0199896.	2.5	38
17	Electrospinning and microfluidics., 2018,, 139-155.		12
18	Combination of biochemical and mechanical cues for tendon tissue engineering. Journal of Cellular and Molecular Medicine, 2017, 21, 2711-2719.	3.6	35

#	Article	IF	CITATIONS
19	Engineering muscle cell alignment through 3D bioprinting. Journal of Biomedical Materials Research - Part A, 2017, 105, 2582-2588.	4.0	84
20	Implantation of a Poly-l-Lactide GCSF-Functionalized Scaffold in a Model of Chronic Myocardial Infarction. Journal of Cardiovascular Translational Research, 2017, 10, 47-65.	2.4	33
21	Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers inÂvitro and inÁvivo. Biomaterials, 2017, 131, 98-110.	11.4	252
22	Naturally derived proteins and glycosaminoglycan scaffolds for tissue engineering applications. Materials Science and Engineering C, 2017, 78, 1277-1299.	7.3	82
23	Classification of M1/M2-polarized human macrophages by label-free hyperspectral reflectance confocal microscopy and multivariate analysis. Scientific Reports, 2017, 7, 8965.	3.3	158
24	Computationally Informed Design of a Multi-Axial Actuated Microfluidic Chip Device. Scientific Reports, 2017, 7, 5489.	3.3	8
25	Combining Type I Interferons and 5-Aza-2′-Deoxycitidine to Improve Anti-Tumor Response against Melanoma. Journal of Investigative Dermatology, 2017, 137, 159-169.	0.7	60
26	Engineering Muscle Networks in 3D Gelatin Methacryloyl Hydrogels: Influence of Mechanical Stiffness and Geometrical Confinement. Frontiers in Bioengineering and Biotechnology, 2017, 5, 22.	4.1	60
27	Functionalization of poly ($\hat{l}\mu$ -caprolactone) surface with lactose-modified chitosan via alkaline hydrolysis: ToF-SIMS characterization. Biointerphases, 2016, 11, 02A323.	1.6	14
28	Pluronic F127 Hydrogel Characterization and Biofabrication in Cellularized Constructs for Tissue Engineering Applications. Procedia CIRP, 2016, 49, 125-132.	1.9	179
29	Old Myths, New Concerns: the Long-Term Effects of Ascending Aorta Replacement with Dacron Grafts. Not All That Glitters Is Gold. Journal of Cardiovascular Translational Research, 2016, 9, 334-342.	2.4	76
30	Preliminary in Vivo Evaluation of a Hybrid Armored Vascular Graft Combining Electrospinning and Additive Manufacturing Techniques. Drug Target Insights, 2016, 10s1, DTI.S35202.	1.4	31
31	Correlation between porous texture and cell seeding efficiency of gas foaming and microfluidic foaming scaffolds. Materials Science and Engineering C, 2016, 62, 668-677.	7.3	70
32	Cells and extracellular matrix interplay in cardiac valve disease: because age matters. Basic Research in Cardiology, 2016, 111, 16.	5.9	29
33	Preoperative Assessment of TERT Promoter Mutation on Thyroid Core Needle Biopsies Supports Diagnosis of Malignancy and Addresses Surgical Strategy. Hormone and Metabolic Research, 2016, 48, 157-162.	1.5	25
34	Investigating Nonalcoholic Fatty Liver Disease in a Liver-on-a-Chip Microfluidic Device. PLoS ONE, 2016, 11, e0159729.	2.5	131
35	A primer of statistical methods for correlating parameters and properties of electrospun poly(<scp>l</scp> -lactide) scaffolds for tissue engineering-PART 1: Design of experiments. Journal of Biomedical Materials Research - Part A, 2015, 103, 91-102.	4.0	20
36	A primer of statistical methods for correlating parameters and properties of electrospun poly(I-lactide) scaffolds for tissue engineering-PART 2: Regression. Journal of Biomedical Materials Research - Part A, 2015, 103, 103-114.	4.0	16

#	Article	IF	CITATIONS
37	Tuning Structural Changes in Glucose Oxidase for Enzyme Fuel Cell Applications. ACS Applied Materials & Samp; Interfaces, 2015, 7, 28311-28318.	8.0	11
38	Tissue engineering and microRNAs: future perspectives in regenerative medicine. Expert Opinion on Biological Therapy, 2015, 15, 1601-1622.	3.1	25
39	Combined additive manufacturing approaches in tissue engineering. Acta Biomaterialia, 2015, 24, 1-11.	8.3	115
40	Graded porous polyurethane foam: A potential scaffold for oro-maxillary bone regeneration. Materials Science and Engineering C, 2015, 51, 329-335.	7.3	64
41	The effect of post-mastectomy radiation therapy on breast implants: Unveiling biomaterial alterations with potential implications on capsular contracture. Materials Science and Engineering C, 2015, 57, 338-343.	7.3	23
42	The role of extracellular matrix in age-related conduction disorders: a forgotten player?. Journal of Geriatric Cardiology, 2015, 12, 76-82.	0.2	32
43	Electrospinning of hydroxyapatite–chitosan nanofibers for tissue engineering applications. Asia-Pacific Journal of Chemical Engineering, 2014, 9, 407-414.	1.5	20
44	Current trends in the design of scaffolds for computer-aided tissue engineering. Acta Biomaterialia, 2014, 10, 580-594.	8.3	369
45	Biological response of human mesenchymal stromal cells to titanium grade 4 implants coated with PCL/ZrO2 hybrid materials synthesized by sol–gel route: in vitro evaluation. Materials Science and Engineering C, 2014, 45, 395-401.	7.3	55
46	Polyurethane-based scaffolds for myocardial tissue engineering. Interface Focus, 2014, 4, 20130045.	3.0	95
47	Characterization of age-related changes of tendon stem cells from adult human tendons. Knee Surgery, Sports Traumatology, Arthroscopy, 2014, 22, 2856-2866.	4.2	79
48	Optimization Approaches for the Design of Additively Manufactured Scaffolds. Computational Methods in Applied Sciences (Springer), 2014, , 113-128.	0.3	2
49	Electrospinning of PCL/PVP blends for tissue engineering scaffolds. Journal of Materials Science: Materials in Medicine, 2013, 24, 1425-1442.	3.6	107
50	Scaffold-Based Delivery of a Clinically Relevant Anti-Angiogenic Drug Promotes the Formation of <i>In Vivo</i> Stable Cartilage. Tissue Engineering - Part A, 2013, 19, 1960-1971.	3.1	47
51	In Situ Electrostimulation Drives a Regenerative Shift in the Zone of Infarcted Myocardium. Cell Transplantation, 2013, 22, 493-503.	2.5	5
52	Dermal Filler Complications from Unknown Biomaterials. Plastic and Reconstructive Surgery, 2013, 131, 597e-603e.	1.4	8
53	Computer-aided tissue engineering for bone regeneration. , 2012, , .		2
54	Simple fabrication technique for multilayered stratified composite scaffolds suitable for interface tissue engineering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 557, 54-58.	5.6	42

#	Article	IF	Citations
55	Bioactive electrospun scaffold for annulus fibrosus repair and regeneration. European Spine Journal, 2012, 21, 20-26.	2.2	65
56	Load-Adaptive Scaffold Architecturing: A Bioinspired Approach to the Design of Porous Additively Manufactured Scaffolds with Optimized Mechanical Properties. Annals of Biomedical Engineering, 2012, 40, 966-975.	2.5	53
57	A G-CSF functionalized scaffold for stem cells seeding: a differentiating device for cardiac purposes. Journal of Cellular and Molecular Medicine, 2011, 15, 1096-1108.	3.6	29
58	Electrospun Hydroxyapatite-Functionalized PLLA Scaffold: Potential Applications in Sternal Bone Healing. Annals of Biomedical Engineering, 2011, 39, 1882-1890.	2.5	33
59	Electrospun scaffolds for bone tissue engineering. Musculoskeletal Surgery, 2011, 95, 69-80.	1.5	62
60	Protonâ€conducting electrolytes based on silylated and sulfonated polyetheretherketone: Synthesis and characterization. Journal of Polymer Science Part A, 2010, 48, 2178-2186.	2.3	9
61	Comparative Study of Different Techniques for the Sterilization of Poly-L-lactide Electrospun Microfibers: Effectiveness vs. Material Degradation. International Journal of Artificial Organs, 2010, 33, 76-85.	1.4	40
62	Muscle Reconstruction and Regeneration Using Biodegradable Scaffolds. , 2010, , .		0
63	MESNA for chemically assisted tissue dissection. Expert Opinion on Investigational Drugs, 2010, 19, 699-707.	4.1	26
64	Heparin-releasing scaffold for stem cells: a differentiating device for vascular aims. Regenerative Medicine, 2010, 5, 645-657.	1.7	32
65	A biomimetic three-layered compartmented scaffold for vascular tissue engineering. , 2010, 2010, 839-42.		2
66	A G-CSF functionalized PLLA scaffold for wound repair: An in vitro preliminary study. , 2010, 2010, 843-6.		12
67	Protecting the Food Supply Chain from Terrorist Attack. International Federation for Information Processing, 2010, , 157-167.	0.4	3
68	Comparative study of different techniques for the sterilization of poly-L-lactide electrospun microfibers: effectiveness vs. material degradation. International Journal of Artificial Organs, 2010, 33, 76-85.	1.4	11
69	Drug releasing systems in cardiovascular tissue engineering. Journal of Cellular and Molecular Medicine, 2009, 13, 422-439.	3.6	58
70	Proton Conducting Hybrid Membranes Based on Aromatic Polymers Blends for Direct Methanol Fuel Cell Applications. Fuel Cells, 2009, 9, 387-393.	2.4	17
71	Poly-l-Lactic Acid/Hydroxyapatite Electrospun Nanocomposites Induce Chondrogenic Differentiation of Human MSC. Annals of Biomedical Engineering, 2009, 37, 1376-1389.	2.5	107
72	Textured and Smooth Breast Implants: Is There a Difference in the Chemical Structure of Silicone?. Annals of Plastic Surgery, 2009, 63, 373-377.	0.9	6

#	Article	IF	CITATIONS
73	Hybrid organic/inorganic materials for photonic applications via assembling of nanostructured molecular units. Journal of Sol-Gel Science and Technology, 2008, 48, 217-223.	2.4	13
74	Fabrication of bioactive glass–ceramic foams mimicking human bone portions for regenerative medicine. Acta Biomaterialia, 2008, 4, 362-369.	8.3	80
75	SPPSU-based hybrid proton conducting polymeric electrolytes for intermediate temperature PEMFCs. Journal of Power Sources, 2007, 167, 79-83.	7.8	34
76	A Simple New Route to Covalent Organic/Inorganic Hybrid Proton Exchange Polymeric Membranes. Chemistry of Materials, 2006, 18, 69-75.	6.7	87
77	SPEEK/PPSU-based organic–inorganic membranes: proton conducting electrolytes in anhydrous and wet environments. Journal of Membrane Science, 2006, 279, 186-191.	8.2	56
78	ATR–FTIR and NMR spectroscopic studies on the structure of polymeric gel electrolytes for biomedical applications. Polymer, 2005, 46, 4670-4675.	3.8	22
79	A covalent organic/inorganic hybrid proton exchange polymeric membrane: synthesis and characterization. Polymer, 2005, 46, 1754-1758.	3.8	70
80	Hybrid Siloxane-Based Nano Building Blocks for Optical Applications: Optimization of the Synthetic Procedures by Spectroscopic Analysis. Journal of Sol-Gel Science and Technology, 2005, 35, 151-157.	2.4	7
81	Functionalized ORMOSIL-Based Hybrid Membranes for Polymer Electrolyte Membrane Fuel Cells. Materials Research Society Symposia Proceedings, 2005, 885, 1.	0.1	0
82	Crosslinked Organic/Inorganic Hybrid Proton Exchange Polymeric Membranes. Materials Research Society Symposia Proceedings, 2005, 885, 1.	0.1	0
83	As to the reasons of the high activity of a commercial pentasil-type zeolite in the vapor-phase Fries rearrangement. Applied Catalysis A: General, 2004, 257, 85-95.	4.3	22
84	Siloxane-Based Nanobuilding Blocks by Reaction Between Silanediol and Trifunctional Silicon Alkoxides. Journal of Sol-Gel Science and Technology, 2004, 32, 57-61.	2.4	6
85	ATR-FTIR spectroscopic study of the effect of ceramic addition in novel ionoconductor gels for biomedical applications in space. Journal of the European Ceramic Society, 2004, 24, 1153-1156.	5.7	8
86	Preparation and characterisation of histidine– and iron–histidine–α-zirconium phosphate intercalation compounds. Catalytic behaviour of the iron derivatives in oxidation reactions with H2O2. Journal of Materials Chemistry, 2003, 13, 834-840.	6.7	11
87	Development of a New Bioartificial Liver Using a Porcine Autologous Biomatrix as Hepatocyte Support. ASAIO Journal, 2002, 48, 592-597.	1.6	5
88	A study of the surface acidity of acid-treated montmorillonite clay catalysts. Journal of Molecular Catalysis A, 2001, 168, 247-256.	4.8	106
89	A study of the external and internal sites of MFI-type zeolitic materials through the FT-IR investigation of the adsorption of nitriles. Applied Catalysis A: General, 2001, 216, 59-71.	4.3	58
90	An FT-IR study of the adsorption of aromatic hydrocarbons and of 2,6-lutidine on H-FER and H-ZSM-5 zeolites. Applied Catalysis A: General, 2001, 220, 181-190.	4.3	40

#	Article	IF	CITATIONS
91	Conversion and hydroconversion of hydrocarbons on zeolite-based catalysts: an FT-IR study. Catalysis Today, 2001, 65, 285-292.	4.4	21
92	An FT-IR study of the internal and external surfaces of HZSM5 zeolite. Applied Catalysis A: General, 2000, 192, 125-136.	4.3	133
93	Solid acid catalysts from clays. Applied Catalysis A: General, 2000, 193, 55-69.	4.3	69
94	An FT-IR study of the reactivity of hydrocarbons on the acid sites of HZSM5 zeolite. Applied Catalysis A: General, 2000, 198, 81-93.	4.3	35
95	Surface acidity modifications induced by thermal treatments and acid leaching on microcrystalline H-BEA zeolite. A FTIR, XRD and MAS-NMR study. Physical Chemistry Chemical Physics, 2000, 2, 3529-3537.	2.8	76
96	FTIR study of the interaction of some branched aliphatic molecules with the external and internal sites of H-ZSM5 zeolite. Physical Chemistry Chemical Physics, 2000, 2, 3341-3348.	2.8	66
97	An investigation of the surface acidity of mesoporous Al-containing MCM-41 and of the external surface of ferrierite through pivalonitrile adsorption. Applied Catalysis A: General, 1999, 182, 225-235.	4.3	97
98	FT-IR Studies on Light Olefin Skeletal Isomerization Catalysis. Journal of Catalysis, 1998, 179, 581-596.	6.2	188
99	Characterization of alumina–titania mixed oxide supports. Microporous and Mesoporous Materials, 1998, 23, 265-275.	4.4	75
100	Ammonia Adsorption and Oxidation on Cu/Mg/Al Mixed Oxide Catalysts PreparedviaHydrotalcite-Type Precursors. Langmuir, 1997, 13, 4628-4637.	3.5	51
101	FT-IR Studies on Light Olefin Skeletal Isomerization Catalysis. Journal of Catalysis, 1997, 168, 334-348.	6.2	81
102	FT-IR Studies on Light Olefin Skeletal Isomerization Catalysis. Journal of Catalysis, 1997, 168, 349-363.	6.2	55
103	Characterization of Silica-Containing Aluminum Hydroxide and Oxide Aerogels. Journal of Colloid and Interface Science, 1997, 190, 416-426.	9.4	26
104	IR study of alkene allylic activation on magnesium ferrite and alumina catalysts. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 4687.	1.7	85
105	Characterization and composition of commercial V2O5&z.sbndWO3&z.sbndTiO2 SCR catalysts. Applied Catalysis B: Environmental, 1996, 10, 299-311.	20.2	161