
King-Lun Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/304524/publications.pdf Version: 2024-02-01

KINC-LUN LL

#	Article	IF	CITATIONS
1	Nucleus accumbens feedforward inhibition circuit promotes cocaine self-administration. Proceedings of the United States of America, 2017, 114, E8750-E8759.	7.1	62
2	Cocaine Triggers Astrocyte-Mediated Synaptogenesis. Biological Psychiatry, 2021, 89, 386-397.	1.3	57
3	Structural Dynamics of C-domain of Cardiac Troponin I Protein in Reconstituted Thin Filament. Journal of Biological Chemistry, 2012, 287, 7661-7674.	3.4	27
4	In Situ Time-Resolved FRET Reveals Effects of Sarcomere Length on Cardiac Thin-Filament Activation. Biophysical Journal, 2014, 107, 682-693.	0.5	24
5	Sarcomere length–dependent effects on Ca2+-troponin regulation in myocardium expressing compliant titin. Journal of General Physiology, 2019, 151, 30-41.	1.9	24
6	Structural basis for the in situ Ca2+ sensitization of cardiac troponin C by positive feedback from force-generating myosin cross-bridges. Archives of Biochemistry and Biophysics, 2013, 537, 198-209.	3.0	20
7	FRET study of the structural and kinetic effects of PKC phosphomimetic cardiac troponin T mutants on thin filament regulation. Archives of Biochemistry and Biophysics, 2014, 550-551, 1-11.	3.0	12
8	Sarcomere length dependent effects on the interaction between cTnC and cTnI in skinned papillary muscle strips. Archives of Biochemistry and Biophysics, 2016, 601, 69-79.	3.0	11
9	Fluorescence Based Characterization of Calcium Sensitizer Action on the Troponin Complex. Chemical Biology and Drug Design, 2016, 87, 171-181.	3.2	9
10	Structural and kinetic effects of hypertrophic cardiomyopathy related mutations R146G/Q and R163W on the regulatory switching activity of rat cardiac troponin I. Archives of Biochemistry and Biophysics, 2013, 535, 56-67.	3.0	7
11	Role of the C-terminus mobile domain of cardiac troponin I in the regulation of thin filament activation in skinned papillary muscle strips. Archives of Biochemistry and Biophysics, 2018, 648, 27-35.	3.0	2
12	Direct interaction between troponin and myosin enhances the ATPase activity of heavy meromyosin. Biologia (Poland), 2017, 72, 702-708.	1.5	1
13	A Model for Ca(2+)-Dependent Cooperative Activation in the Cardiac Thin Filament that Allows for Crossbridge Cycle Feedback. Biophysical Journal, 2012, 102, 356a-357a.	0.5	0
14	Structural and Kinetic Effects of HCM Related Mutations R146G/Q and R163W of Cardiac Troponin I on cTnl-cTnC Interaction within Reconstituted Thin Filament. Biophysical Journal, 2013, 104, 449a.	0.5	0
15	The Ca2+-Induced Structural Changes in Troponin In-Situ and In-Vitro: A FRET Study in Permeabilized Cardiac Muscle Fibers and Reconstituted Thin Filaments. Biophysical Journal, 2013, 104, 482a.	0.5	0
16	Structural and Kinetic Studies using FRET: Impact of Pseudo-Pkc Phosphorylation of Cardiac Troponin T on Calcium-Activated Thin Filament Regulation. Biophysical Journal, 2013, 104, 449a.	0.5	0
17	Truncation of the Mobile Domain of Cardiac Troponin I Results in Biphasic Calcium-Dependent Thin Filament Activation. Biophysical Journal, 2014, 106, 722a-723a.	0.5	0
18	Monitoring Cardiac Troponin Structural Changes using In-Situ Time-Resolved FRET: Implications on the Regulatory Roles of Cross-Bridges and Sarcomere Length. Biophysical Journal, 2014, 106, 769a-770a.	0.5	0

King-Lun Li

#	Article	IF	CITATIONS
19	Direct Troponin-Myosin Interaction Enhances ATPase Activity of Cardiac HMM. Biophysical Journal, 2015, 108, 421a.	0.5	Ο
20	Sarcomere Length Dependent Effects on Ca2+-Induced Troponin Regulation within Chemically Skinned Cardiac Muscle Fibers. Biophysical Journal, 2016, 110, 465a.	0.5	0
21	Sarcomere Lengthdependent Effects on the Ca 2+ -Troponin Regulation in Skinned Myocardial Fiber from Titin RBM20 Deletion Mice. Biophysical Journal, 2017, 112, 257a.	0.5	Ο