Takashi Uemura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3045200/publications.pdf

Version: 2024-02-01

130 papers

8,183 citations

43 h-index 48187 88 g-index

142 all docs

142 docs citations

times ranked

142

8075 citing authors

#	Article	IF	CITATIONS
1	Hybridization of MOFs and polymers. Chemical Society Reviews, 2017, 46, 3108-3133.	18.7	708
2	Polymerization reactions in porous coordination polymers. Chemical Society Reviews, 2009, 38, 1228.	18.7	611
3	Prussian Blue Nanoparticles Protected by Poly(vinylpyrrolidone). Journal of the American Chemical Society, 2003, 125, 7814-7815.	6.6	414
4	Gas detection by structural variations of fluorescent guest molecules in a flexible porous coordination polymer. Nature Materials, 2011, 10, 787-793.	13.3	395
5	Guest-to-Host Transmission of Structural Changes for Stimuli-Responsive Adsorption Property. Journal of the American Chemical Society, 2012, 134, 4501-4504.	6.6	326
6	Nanochannel-Promoted Polymerization of Substituted Acetylenes in Porous Coordination Polymers. Angewandte Chemie - International Edition, 2006, 45, 4112-4116.	7.2	233
7	Inorganic nanoparticles in porous coordination polymers. Chemical Society Reviews, 2016, 45, 3828-3845.	18.7	220
8	Unveiling thermal transitions of polymers in subnanometre pores. Nature Communications, 2010, 1, 83.	5.8	210
9	Radical Polymerization of Vinyl Monomers in Porous Coordination Polymers:  Nanochannel Size Effects on Reactivity, Molecular Weight, and Stereostructure. Macromolecules, 2008, 41, 87-94.	2.2	200
10	Autonomous motors of a metal–organic framework powered by reorganization ofÂself-assembled peptides at interfaces. Nature Materials, 2012, 11, 1081-1085.	13.3	200
11	Nanostructuration of PEDOT in Porous Coordination Polymers for Tunable Porosity and Conductivity. Journal of the American Chemical Society, 2016, 138, 10088-10091.	6.6	193
12	Size and Surface Effects of Prussian Blue Nanoparticles Protected by Organic Polymers. Inorganic Chemistry, 2004, 43, 7339-7345.	1.9	190
13	Highly ordered alignment of a vinyl polymer by host–guest cross-polymerization. Nature Chemistry, 2013, 5, 335-341.	6.6	172
14	Supramolecular Chiral Nanoarchitectonics. Advanced Materials, 2020, 32, e1905657.	11.1	150
15	Radical polymerisation of styrene in porous coordination polymers. Chemical Communications, 2005, , 5968.	2.2	148
16	Conformation and Molecular Dynamics of Single Polystyrene Chain Confined in Coordination Nanospace. Journal of the American Chemical Society, 2008, 130, 6781-6788.	6.6	133
17	A phase transformable ultrastable titanium-carboxylate framework for photoconduction. Nature Communications, 2018, 9, 1660.	5.8	128
18	Polymerization in Coordination Nanospaces. Chemistry - an Asian Journal, 2006, 1, 36-44.	1.7	127

#	Article	IF	CITATIONS
19	Fabrication of Twoâ€Dimensional Polymer Arrays: Template Synthesis of Polypyrrole between Redoxâ€Active Coordination Nanoslits. Angewandte Chemie - International Edition, 2008, 47, 9883-9886.	7.2	126
20	Synthesis of Novel Stable Nanometer-Sized Metal (M = Pd, Au, Pt) Colloids Protected by a π-Conjugated Polymer. Langmuir, 2002, 18, 277-283.	1.6	124
21	Topotactic Linear Radical Polymerization of Divinylbenzenes in Porous Coordination Polymers. Angewandte Chemie - International Edition, 2007, 46, 4987-4990.	7.2	124
22	Functionalization of Coordination Nanochannels for Controlling Tacticity in Radical Vinyl Polymerization. Journal of the American Chemical Society, 2010, 132, 4917-4924.	6.6	108
23	Highly Photoconducting j̃€-Stacked Polymer Accommodated in Coordination Nanochannels. Journal of the American Chemical Society, 2012, 134, 8360-8363.	6.6	97
24	Template Synthesis of Porous Polypyrrole in 3D Coordination Nanochannels. Chemistry of Materials, 2009, 21, 4096-4098.	3.2	91
25	Effect of Organic Polymer Additive on Crystallization of Porous Coordination Polymer. Chemistry of Materials, 2006, 18, 992-995.	3.2	83
26	How Reproducible are Surface Areas Calculated from the BET Equation?. Advanced Materials, 2022, 34,	11,1	82
27	Controlled polymerizations using metal–organic frameworks. Chemical Communications, 2018, 54, 11843-11856.	2.2	81
28	Synthesis of a trans-chelating chiral diphosphine ligand with only planar chirality and its application to asymmetric hydrosilylation of ketones. Tetrahedron Letters, 1999, 40, 1327-1330.	0.7	76
29	Nanocrystals of Coordination Polymers. Chemistry Letters, 2005, 34, 132-137.	0.7	75
30	Peptide–Metal Organic Framework Swimmers that Direct the Motion toward Chemical Targets. Nano Letters, 2015, 15, 4019-4023.	4. 5	73
31	Confinement of Single Polysilane Chains in Coordination Nanospaces. Journal of the American Chemical Society, 2015, 137, 5231-5238.	6.6	70
32	Opening of an Accessible Microporosity in an Otherwise Nonporous Metal–Organic Framework by Polymeric Guests. Journal of the American Chemical Society, 2017, 139, 7886-7892.	6.6	65
33	Preparation, Optical Spectroscopy, and Electrochemical Studies of Novel π-Conjugated Polymer-Protected Stable PbS Colloidal Nanoparticles in a Nonaqueous Solution. Langmuir, 2002, 18, 5287-5292.	1.6	61
34	Peptide Assemblyâ€Driven Metal–Organic Framework (MOF) Motors for Micro Electric Generators. Advanced Materials, 2015, 27, 288-291.	11.1	60
35	Sequence-regulated copolymerization based on periodic covalent positioning of monomers along one-dimensional nanochannels. Nature Communications, 2018, 9, 329.	5 . 8	60
36	Mixing of immiscible polymers using nanoporous coordination templates. Nature Communications, 2015, 6, 7473.	5.8	58

#	Article	IF	CITATIONS
37	Controlled Synthesis of Anisotropic Polymer Particles Templated by Porous Coordination Polymers. Chemistry of Materials, 2013, 25, 3772-3776.	3.2	56
38	Preparation of π-conjugated polymer-protected gold nanoparticles in stable colloidal form. Chemical Communications, 2001, , 613-614.	2.2	55
39	Unraveling Inter―and Intrachain Electronics in Polythiophene Assemblies Mediated by Coordination Nanospaces. Angewandte Chemie - International Edition, 2016, 55, 708-713.	7.2	52
40	Recognition of Polymer Terminus by Metal–Organic Frameworks Enabling Chromatographic Separation of Polymers. Journal of the American Chemical Society, 2020, 142, 3701-3705.	6.6	50
41	A Polymer with Two Different Redox Centers in the π-Conjugated Main Chain: Alternate Combinations of Ferrocene and Dithiafulvene. Macromolecules, 2000, 33, 6965-6969.	2.2	48
42	Inclusion and dynamics of a polymer–Li salt complex in coordination nanochannels. Chemical Communications, 2011, 47, 1722.	2.2	47
43	A trans-chelating bisphosphine possessing only planar chirality and its application to catalytic asymmetric reactions. Tetrahedron: Asymmetry, 2004, 15, 2263-2271.	1.8	44
44	Solâ^'Gel Synthesis of Low-Dimensional Silica within Coordination Nanochannels. Journal of the American Chemical Society, 2008, 130, 9216-9217.	6.6	44
45	Selective sorting of polymers with different terminal groups using metal-organic frameworks. Nature Communications, 2018, 9, 3635.	5.8	44
46	Transcription of Chirality from Metal–Organic Framework to Polythiophene. Journal of the American Chemical Society, 2019, 141, 19565-19569.	6.6	43
47	Stepwise Guest Adsorption with Large Hysteresis in a Coordination Polymer {[Cu(bhnq)(THF)2](THF)}n Constructed from a Flexible Hingelike Ligand. Inorganic Chemistry, 2006, 45, 4322-4324.	1.9	41
48	Effects of Unsaturated Metal Sites on Radical Vinyl Polymerization in Coordination Nanochannels. Macromolecules, 2011, 44, 2693-2697.	2.2	40
49	Enhanced mechanical properties of a metal–organic framework by polymer insertion. Chemical Communications, 2019, 55, 691-694.	2.2	38
50	Scalable and Precise Synthesis of Armchair-Edge Graphene Nanoribbon in Metal–Organic Framework. Journal of the American Chemical Society, 2020, 142, 5509-5514.	6.6	37
51	Ï€-Conjugated Poly(dithiafulvene) by Cycloaddition Polymerization of Aldothioketene with Its Alkynethiol Tautomer. Polymerization, Optical Properties, and Electrochemical Analysis. Macromolecules, 1999, 32, 4641-4646.	2.2	35
52	Synthesis of π-Conjugated Poly(dithiafulvene) by Cycloaddition Polymerization of Aldothioketene with Its Alkynethiol Tautomer. Macromolecules, 1998, 31, 7570-7571.	2.2	33
53	Linearly Extended π-Conjugated Dithiafulvene Polymer Formed Soluble Charge-Transfer Complex with 7,7,8,8-Tetracyanoquinodimethane. Polymer Journal, 2000, 32, 435-439.	1.3	33
54	Molecular-Level Studies on Dynamic Behavior of Oligomeric Chain Molecules in Porous Coordination Polymers. Journal of Physical Chemistry C, 2015, 119, 21504-21514.	1.5	33

#	Article	IF	CITATIONS
55	Behavior of Binary Guests in a Porous Coordination Polymer. Chemistry of Materials, 2012, 24, 4744-4749.	3.2	32
56	The controlled synthesis of polyglucose in one-dimensional coordination nanochannels. Chemical Communications, 2016, 52, 5156-5159.	2.2	32
57	Preparation of polythiophene microrods with ordered chain alignment using nanoporous coordination template. Polymer Chemistry, 2017, 8, 5077-5081.	1.9	32
58	Confinement of poly(allylamine) in Preyssler-type polyoxometalate and potassium ion framework for enhanced proton conductivity. Communications Chemistry, 2019, 2, .	2.0	31
59	Radical Polymerization of Vinyl Monomers in Porous Organic Cages. Angewandte Chemie - International Edition, 2016, 55, 6443-6447.	7.2	30
60	Metal–Organic Frameworks as Versatile Media for Polymer Adsorption and Separation. Accounts of Chemical Research, 2021, 54, 3593-3603.	7.6	29
61	Preparation of Oriented Ultrathin Films via Self-Assembly Based on Charge Transfer Interaction between π-Conjugated Poly(dithiafulvene) and Acceptor Polymer. Macromolecules, 2003, 36, 533-535.	2.2	28
62	Radical Copolymerizations of Vinyl Monomers in a Porous Coordination Polymer. Chemistry Letters, 2008, 37, 616-617.	0.7	28
63	Incarceration of Nanosized Silica into Porous Coordination Polymers: Preparation, Characterization, and Adsorption Property. Chemistry of Materials, 2011, 23, 1736-1741.	3.2	28
64	Metal-Organic Frameworks for Macromolecular Recognition and Separation. Matter, 2020, 3, 652-663.	5.0	28
65	Synthesis and Properties of π-Conjugated Poly(dithiafulvene)s by Cycloaddition Polymerization of Heteroaromatic Bisthioketenes. Macromolecules, 2000, 33, 4733-4737.	2.2	27
66	Unimolecularly thick monosheets of vinyl polymers fabricated in metal–organic frameworks. Nature Communications, 2020, 11, 3573.	5.8	27
67	Controlled Cyclopolymerization of Difunctional Vinyl Monomers in Coordination Nanochannels. Macromolecules, 2014, 47, 7321-7326.	2.2	26
68	Development of Functional Materials via Polymer Encapsulation into Metal–Organic Frameworks. Bulletin of the Chemical Society of Japan, 2021, 94, 2139-2148.	2.0	26
69	Preparation of Porous Polysaccharides Templated by Coordination Polymer with Three-Dimensional Nanochannels. ACS Applied Materials & Samp; Interfaces, 2017, 9, 11373-11379.	4.0	25
70	Reciprocal regulation between MOFs and polymers. Coordination Chemistry Reviews, 2022, 466, 214601.	9.5	25
71	Radical Copolymerization Mediated by Unsaturated Metal Sites in Coordination Nanochannels. ACS Macro Letters, 2015, 4, 788-791.	2.3	24
72	Radical polymerization of 2,3-dimethyl-1,3-butadiene in coordination nanochannels. Chemical Communications, 2015, 51, 9892-9895.	2.2	24

#	Article	IF	CITATIONS
73	Revisiting molecular adsorption: unconventional uptake of polymer chains from solution into sub-nanoporous media. Chemical Science, 2021, 12, 12576-12586.	3.7	23
74	Carbonization of single polyacrylonitrile chains in coordination nanospaces. Chemical Science, 2020, 11, 10844-10849.	3.7	22
75	Oxidative polymerization of terthiophene and a substituted thiophene monomer in metal-organic framework thin films. European Polymer Journal, 2018, 109, 162-168.	2.6	21
76	A fluorescent microporous crystalline dendrimer discriminates vapour molecules. Chemical Communications, 2018, 54, 2534-2537.	2.2	19
77	Fluorinated porous molecular crystals: vapor-triggered on–off switching of luminescence and porosity. Chemical Communications, 2019, 55, 6487-6490.	2.2	19
78	Hybridization of Synthetic Humins with a Metal–Organic Framework for Precious Metal Recovery and Reuse. ACS Applied Materials & Samp; Interfaces, 2021, 13, 60027-60034.	4.0	19
79	Polymer in MOF Nanospace: from Controlled Chain Assembly to New Functional Materials. Israel Journal of Chemistry, 2018, 58, 995-1009.	1.0	18
80	Impact of the position of the imine linker on the optoelectronic performance of π-conjugated organic frameworks. Molecular Systems Design and Engineering, 2019, 4, 325-331.	1.7	18
81	Metalâ€Organic Frameworks for Practical Separation of Cyclic and Linear Polymers. Angewandte Chemie - International Edition, 2021, 60, 11830-11834.	7.2	18
82	Chiral Induction in Buckminsterfullerene Using a Metal–Organic Framework. Angewandte Chemie - International Edition, 2021, 60, 17947-17951.	7.2	18
83	Controlling the Packing of Metal–Organic Layers by Inclusion of Polymer Guests. Journal of the American Chemical Society, 2019, 141, 14549-14553.	6.6	17
84	Inclusion and dielectric properties of a vinylidene fluoride oligomer in coordination nanochannels. Dalton Transactions, 2012, 41, 4195.	1.6	16
85	Polymers in Metal–Organic Frameworks: From Nanostructured Chain Assemblies to New Functional Materials. Chemistry Letters, 2020, 49, 624-632.	0.7	15
86	Alternating ?-conjugated copolymer of dithiafulvene with 2,2?-bipyridyl units. Journal of Polymer Science Part A, 2001, 39, 4083-4090.	2.5	14
87	Ï€-Conjugated Poly(dithiafulvene)s and Poly(diselenafulvene)s:Â Effects of Side Alkyl Chains on Optical, Electrochemical, and Conducting Properties. Macromolecules, 2002, 35, 3539-3543.	2.2	14
88	Controlled Encapsulation of Photoresponsive Macromolecules in Porous Coordination Polymer. Chemistry Letters, 2013, 42, 222-223.	0.7	14
89	Compositional Phase Separation in La2-xBaxCuOynear the Optimum Composition for Superconductivity. Journal of the Physical Society of Japan, 1993, 62, 1114-1117.	0.7	14
90	Functional Macromolecules with Electron-Donating Dithiafulvene Unit. Advances in Polymer Science, 2004, , 81-106.	0.4	13

#	Article	IF	CITATIONS
91	Synthesis of a π-Conjugated Poly(thioketene dimer) and Its Electron-Donating Property. Macromolecules, 2001, 34, 346-348.	2.2	12
92	Electron-Accepting System of Siâ^'Si Bond in Linear Framework by Combination with Strong Donor. Journal of the American Chemical Society, 2001, 123, 6209-6210.	6.6	12
93	Controlled Polymerization by Incarceration of Monomers in Nanochannels. Topics in Current Chemistry, 2009, 293, 155-173.	4.0	12
94	Polymer Synthesis in Coordination Nanospaces. Bulletin of the Chemical Society of Japan, 2011, 84, 1169-1177.	2.0	12
95	Thermal ring-opening polymerization of an unsymmetrical silicon-bridged [1]ferrocenophane in coordination nanochannels. Chemical Communications, 2017, 53, 6945-6948.	2.2	12
96	Mixed Metal–Organic Framework Stationary Phases for Liquid Chromatography. ACS Nano, 2022, 16, 6771-6780.	7.3	12
97	Meissner Effect in La2-xBaxCuOyas Functions ofxandy. Journal of the Physical Society of Japan, 1991, 60, 1300-1305.	0.7	11
98	Supramolecular Approaches towards Ordered Polymer Materials. Chemistry - A European Journal, 2014, 20, 1482-1489.	1.7	11
99	Radical Polymerization of Vinyl Monomers in Porous Organic Cages. Angewandte Chemie, 2016, 128, 6553-6557.	1.6	11
100	Controlled Organization of Anthracene in Porous Coordination Polymers. Chemistry Letters, 2017, 46, 1705-1707.	0.7	11
101	Selective Formation of End-on Orientation between Polythiophene and Fullerene Mediated by Coordination Nanospaces. Journal of Physical Chemistry C, 2018, 122, 24182-24189.	1.5	11
102	End-functionalization of a vinylidene fluoride oligomer in coordination nanochannels. Journal of Materials Chemistry, 2011, 21, 8021.	6.7	9
103	Synthesis and luminescent properties of bithiazole and dithiafulvene derivatives. Synthetic Metals, 2001, 121, 1689-1690.	2.1	8
104	Self-Complexation of a Poly-Conjugated Donor Molecule with a Cyclic Acceptor. Bulletin of the Chemical Society of Japan, 2002, 75, 2053-2057.	2.0	8
105	Ï€-Conjugated Polymers with Electroactive Thioketene Dimer Unit. Macromolecules, 2002, 35, 3806-3809.	2.2	8
106	Sol–gel synthesis of nanosized titanium oxide in a porous coordination polymer. Microporous and Mesoporous Materials, 2014, 195, 31-35.	2.2	8
107	Fabrication of Ceria Nanoparticles Incorporated in Porous Coordination Polymer. Chemistry Letters, 2014, 43, 1749-1751.	0.7	7
108	Chiral Induction in Buckminsterfullerene Using a Metal–Organic Framework. Angewandte Chemie, 2021, 133, 18091-18095.	1.6	7

#	Article	IF	CITATIONS
109	Toughening and stabilizing MOF crystals <i>via</i> polymeric guest inclusion. Dalton Transactions, 2022, 51, 13204-13209.	1.6	6
110	Nanoconfinement of an Otherwise Useless Fluorophore in Metal–Organic Frameworks to Elicit and Tune Emission. Journal of Physical Chemistry C, 2022, 126, 6628-6636.	1.5	5
111	Synthesis and properties of ?-conjugated dithiafulvene oligomers by addition of a monofunctionalized compound. Journal of Polymer Science Part A, 2003, 41, 708-715.	2.5	4
112	Synthesis of polymers having $1,3$ -cyclobutanedione unit in the main chain by cycloaddition polymerization of bisketene. Polymer Bulletin, $1999, 42, 367-372$.	1.7	3
113	Intramolecular Charge-Transfer Polymers between Dithiafulvene and Pyridinium Units: Conjugative Effect through Saturated Polymethylene Chains. Bulletin of the Chemical Society of Japan, 2002, 75, 2673-2679.	2.0	3
114	Layer-by-layer films based on charge transfer interaction of φ-conjugated poly(dithiafulvene) and incorporation of gold nanoparticles into the films. Journal of Applied Polymer Science, 2007, 103, 1608-1615.	1.3	3
115	Synthesis of chiral porous coordination polymer that shows structural transformation induced by guest molecules. Inorganica Chimica Acta, 2015, 424, 221-225.	1.2	3
116	Terminus-dependent insertion of molten poly(ethylene glycol) into a flexible metal-organic framework. European Polymer Journal, 2020, 134, 109855.	2.6	3
117	Kinetic Control in Synthesis of Polymers Using Nanoporous Metal-Organic Frameworks. , 2019, , 185-204.		1
118	Nanoarchitectonics: Supramolecular Chiral Nanoarchitectonics (Adv. Mater. 41/2020). Advanced Materials, 2020, 32, 2070310.	11.1	1
119	Creation of Molecular-Assembling, -Stressing, and Converting Fields Based on Nanospaces of Metal Complexes. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2004, 62, 424-432.	0.0	1
120	Controlled Polymer Synthesis in Coordination Nanochannels. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2012, 70, 324-330.	0.0	1
121	Coordination Nanochannels for Polymer Materials. Springer Briefs in Molecular Science, 2013, , 41-48.	0.1	1
122	Synthesis and properties of oxygen-, methylene-, and alkylene-bridged poly(dithiafulvene)s. Journal of Polymer Science Part A, 2001, 39, 3593-3603.	2.5	0
123	Creation of Molecular-Assembling, -Stressing, and Converting Fields Based on Nanospaces of Metal Complexes. ChemInform, 2004, 35, no.	0.1	0
124	A trans-Chelating Bisphosphine Possessing only Planar Chirality and Its Application to Catalytic Asymmetric Reactions ChemInform, 2004, 35, no.	0.1	0
125	Amphiphilic Tetrathiafulvalene Derivative: Charge-Transfer Complexation Behavior in Solutions. Bulletin of the Chemical Society of Japan, 2005, 78, 519-522.	2.0	0
126	Precision Polymer Synthesis in Porous Metal-Organic Frameworks. Kobunshi Ronbunshu, 2015, 72, 191-198.	0.2	0

#	Article	IF	CITATIONS
127	Metalâ€Organic Frameworks for Practical Separation of Cyclic and Linear Polymers. Angewandte Chemie, 2021, 133, 11936-11940.	1.6	0
128	Crystalline Coordination Nanospaces for Development of New Polymer Chemistry. Nihon Kessho Gakkaishi, 2013, 55, 75-80.	0.0	0
129	(Invited) Nanostructured Conjugated Materials in Metal-Organic Frameworks. ECS Transactions, 2020, 98, 23-28.	0.3	O
130	(Invited) Nanostructured Conjugated Materials in Metal-Organic Frameworks. ECS Meeting Abstracts, 2020, MA2020-02, 2010-2010.	0.0	0