Ruth-Anne Sandaa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/304518/publications.pdf

Version: 2024-02-01

42 papers 1,757 citations

20 h-index 289244 40 g-index

45 all docs

45 docs citations

45 times ranked

1998 citing authors

#	Article	IF	CITATIONS
1	Abundance and Diversity of <i>Archaea</i> in Heavy-Metal-Contaminated Soils. Applied and Environmental Microbiology, 1999, 65, 3293-3297.	3.1	147
2	Isolation and Characterization of Two Viruses with Large Genome Size Infecting Chrysochromulina ericina (Prymnesiophyceae) and Pyramimonas orientalis (Prasinophyceae). Virology, 2001, 290, 272-280.	2.4	133
3	A theoretical analysis of how strain-specific viruses can control microbial species diversity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7813-7818.	7.1	130
4	Spring phytoplankton bloom dynamics in Norwegian coastal waters: Microbial community succession and diversity. Limnology and Oceanography, 2004, 49, 180-190.	3.1	126
5	Marine mimivirus relatives are probably large algal viruses. Virology Journal, 2008, 5, 12.	3.4	104
6	Synechococcus in the Atlantic Gateway to the Arctic Ocean. Frontiers in Marine Science, 2016, 3, .	2.5	103
7	Seasonal Variations in Virus-Host Populations in Norwegian Coastal Waters: Focusing on the Cyanophage Community Infecting Marine Synechococcus spp. Applied and Environmental Microbiology, 2006, 72, 4610-4618.	3.1	91
8	Seasonal diversity and dynamics of haptophytes in the <scp>S</scp> kagerrak, <scp>N</scp> orway, explored by highâ€throughput sequencing. Molecular Ecology, 2015, 24, 3026-3042.	3.9	90
9	ISOLATION AND CHARACTERIZATION OF A VIRUS THAT INFECTS <i>EMILIANIA HUXLEYI</i> (HAPTOPHYTA) (HAPTOPHYTA) Sup>1 (sup>1 Phycology 2002 38 767-774	2.3	86
10	Viral control of bacterial biodiversity – evidence from a nutrientâ€enriched marine mesocosm experiment. Environmental Microbiology, 2009, 11, 2585-2597.	3.8	78
11	Transfer in Marine Sediments of the Naturally Occurring Plasmid pRAS1 Encoding Multiple Antibiotic Resistance. Applied and Environmental Microbiology, 1994, 60, 4234-4238.	3.1	67
12	Diversity of airborne bacteria in samples collected using different devices for aerosol collection. Aerobiologia, 2011, 27, 107-120.	1.7	66
13	Burden or benefit? Virus–host interactions in the marine environment. Research in Microbiology, 2008, 159, 374-381.	2.1	43
14	Virioplankton community structure along a salinity gradient in a solar saltern. Extremophiles, 2003, 7, 347-351.	2.3	38
15	Characterisation of three novel giant viruses reveals huge diversity among viruses infecting Prymnesiales (Haptophyta). Virology, 2015, 476, 180-188.	2.4	35
16	Simple models combining competition, defence and resource availability have broad implications in pelagic microbial food webs. Ecology Letters, 2018, 21, 1440-1452.	6.4	33
17	Seasonal Dynamics of Haptophytes and dsDNA Algal Viruses Suggest Complex Virus-Host Relationship. Viruses, 2017, 9, 84.	3.3	31
18	A Persistent Giant Algal Virus, with a Unique Morphology, Encodes an Unprecedented Number of Genes Involved in Energy Metabolism. Journal of Virology, 2021, 95, .	3.4	31

#	Article	IF	Citations
19	Top-down and bottom-up control on bacterial diversity in a western Norwegian deep-silled fjord. FEMS Microbiology Ecology, 2015, 91, fiv076.	2.7	29
20	Tsv-N1: A Novel DNA Algal Virus that Infects Tetraselmis striata. Viruses, 2015, 7, 3937-3953.	3.3	28
21	Seasonality Drives Microbial Community Structure, Shaping both Eukaryotic and Prokaryotic Host–Viral Relationships in an Arctic Marine Ecosystem. Viruses, 2018, 10, 715.	3.3	26
22	Bacterial community composition in an Arctic phytoplankton mesocosm bloom: the impact of silicate and glucose. Polar Biology, 2010, 33, 1557-1565.	1.2	24
23	Finding a Needle in the Virus Metagenome Haystack - Micro-Metagenome Analysis Captures a Snapshot of the Diversity of a Bacteriophage Armoire. PLoS ONE, 2012, 7, e34238.	2.5	23
24	Photosynthetic genes in viral populations with a large genomic size range from Norwegian coastal waters. FEMS Microbiology Ecology, 2008, 63, 2-11.	2.7	22
25	Linking bacterial community structure to advection and environmental impact along a coast-fjord gradient of the Sognefjord, western Norway. Progress in Oceanography, 2017, 159, 13-30.	3.2	18
26	Effect of increased <i>p </i> CO < sub > 2 on bacterial assemblage shifts in response to glucose addition in Fram Strait seawater mesocosms. FEMS Microbiology Ecology, 2012, 82, 713-723.	2.7	17
27	The 474-Kilobase-Pair Complete Genome Sequence of CeV-01B, a Virus Infecting <i>Haptolina</i> () Tj ETQq1 1	0.784314	rgBT /Overlo
28	The Response of Heterotrophic Prokaryote and Viral Communities to Labile Organic Carbon Inputs Is Controlled by the Predator Food Chain Structure. Viruses, 2017, 9, 238.	3.3	16
29	Going to extremes – a metagenomic journey into the dark matter of life. FEMS Microbiology Letters, 2021, 368, .	1.8	16
30	Effects of differences in organic supply on bacterial diversity subject to viral lysis. FEMS Microbiology Ecology, 2013, 83, 202-213.	2.7	13
31	Emerging Interaction Patterns in the Emiliania huxleyi-EhV System. Viruses, 2017, 9, 61.	3.3	12
32	Dip in the gene pool: Metagenomic survey of natural coccolithovirus communities. Virology, 2014, 466-467, 129-137.	2.4	10
33	Seasonal Dynamics of Algae-Infecting Viruses and Their Inferred Interactions with Protists. Viruses, 2019, 11, 1043.	3.3	10
34	Analysis of bacterial communities in heavy metal-contaminated soils at different levels of resolution. FEMS Microbiology Ecology, 1999, 30, 237-251.	2.7	10
35	Virus infection of Haptolina ericina and Phaeocystis pouchetii implicates evolutionary conservation of programmed cell death induction in marine haptophyte–virus interactions. Journal of Plankton Research, 2014, 36, 943-955.	1.8	8
36	Water Masses and Depth Structure Prokaryotic and T4-Like Viral Communities Around Hydrothermal Systems of the Nordic Seas. Frontiers in Microbiology, 2018, 9, 1002.	3.5	6

#	Article	IF	CITATIONS
37	Reproducing the virusâ€toâ€copepod link in Arctic mesocosms using host fitness optimization. Limnology and Oceanography, 2021, 66, S303.	3.1	6
38	Is the Virus Important? And Some Other Questions. Viruses, 2018, 10, 442.	3.3	4
39	Adaptive evolution of viruses infecting marine microalgae (haptophytes), from acute infections to stable coexistence. Biological Reviews, 2021, , .	10.4	3
40	Algal Mimiviruses (Mimiviridae)., 2021,, 677-683.		3
41	Micromonas versus virus: New experimental insights challenge viral impact. Environmental Microbiology, 2017, 19, 2068-2076.	3.8	2
42	Removal of large viruses and their dispersal through fecal pellets of the appendicularian Oikopleura dioica during Emiliania huxleyi bloom conditions. Limnology and Oceanography, 2021, 66, 3963.	3.1	1