Xiaoying Bian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3044722/publications.pdf

Version: 2024-02-01

257450 223800 2,316 63 24 46 citations g-index h-index papers 64 64 64 2067 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Enhancement of edeine production in <i>Brevibacillus brevis</i> X23 via <i>inÂsitu</i> promoter engineering. Microbial Biotechnology, 2022, 15, 577-589.	4.2	8
2	Development of environmentally friendly biological algicide and biochemical analysis of inhibitory effect of diatom Skeletonema costatum. Chinese Chemical Letters, 2022, 33, 1358-1364.	9.0	12
3	Improved dsDNA recombineering enables versatile multiplex genome engineering of kilobase-scale sequences in diverse bacteria. Nucleic Acids Research, 2022, 50, e15-e15.	14.5	8
4	In vitro characterization of a nitro-forming oxygenase involved in 3-(trans-2'-aminocyclopropyl)alanine biosynthesis. Engineering Microbiology, 2022, 2, 100007.	4.7	9
5	Characterization of a Cryptic NRPS Gene Cluster in <i>Bacillus velezensis</i> FZB42 Reveals a Discrete Oxidase Involved in Multithiazole Biosynthesis. ACS Catalysis, 2022, 12, 3371-3381.	11.2	13
6	Biosynthesis of Fungal Natural Products Involving Two Separate Pathway Crosstalk. Journal of Fungi (Basel, Switzerland), 2022, 8, 320.	3.5	6
7	Editorial: Microbial Siderophores: Biosynthesis, Regulation, and Physiological and Ecological Impacts. Frontiers in Microbiology, 2022, 13, 892485.	3.5	1
8	Microbial chassis engineering drives heterologous production of complex secondary metabolites. Biotechnology Advances, 2022, 59, 107966.	11.7	30
9	Recombineering-Mediated Genome Editing in Burkholderiales Strains. Methods in Molecular Biology, 2022, 2479, 21-36.	0.9	2
10	Biosynthesis of Glidomides and Elucidation of Different Mechanisms for Formation of βâ€OH Amino Acid Building Blocks. Angewandte Chemie - International Edition, 2022, 61, .	13.8	4
11	Unusual Post-Translational Modifications in the Biosynthesis of Lasso Peptides. International Journal of Molecular Sciences, 2022, 23, 7231.	4.1	6
12	Genomics-Driven Activation of Silent Biosynthetic Gene Clusters in Burkholderia gladioli by Screening Recombineering System. Molecules, 2021, 26, 700.	3.8	10
13	Engineering and elucidation of the lipoinitiation process in nonribosomal peptide biosynthesis. Nature Communications, 2021, 12, 296.	12.8	34
14	Genome Mining, Heterologous Expression, Antibacterial and Antioxidant Activities of Lipoamides and Amicoumacins from Compost-Associated Bacillus subtilis fmb60. Molecules, 2021, 26, 1892.	3.8	2
15	Engineering the acyltransferase domain of epothilone polyketide synthase to alter the substrate specificity. Microbial Cell Factories, 2021, 20, 86.	4.0	10
16	Recombineering facilitates the discovery of natural product biosynthetic pathways in <i>Pseudomonas parafulva </i> . Biotechnology Journal, 2021, 16, e2000575.	3.5	7
17	Rational construction of genome-reduced Burkholderiales chassis facilitates efficient heterologous production of natural products from proteobacteria. Nature Communications, 2021, 12, 4347.	12.8	26
18	Saccharochelins Aâ€"H, Cytotoxic Amphiphilic Siderophores from the Rare Marine Actinomycete <i>Saccharothrix</i> sp. D09. Journal of Natural Products, 2021, 84, 2149-2156.	3.0	6

#	Article	IF	Citations
19	Discovery of Polycyclic Macrolide Shuangdaolides by Heterologous Expression of a Cryptic <i>trans</i> -AT PKS Gene Cluster. Organic Letters, 2021, 23, 6967-6971.	4.6	12
20	Biosynthesis of Chuangxinmycin Featuring a Deubiquitinaseâ€like Sulfurtransferase. Angewandte Chemie - International Edition, 2021, 60, 24418-24423.	13.8	9
21	Genome-Guided Discovery of Highly Oxygenated Aromatic Polyketides, Saccharothrixins D–M, from the Rare Marine Actinomycete ⟨i⟩Saccharothrix⟨li⟩ sp. D09. Journal of Natural Products, 2021, 84, 2875-2884.	3.0	8
22	Enhanced growth of ginger plants by an ecoâ€ê€Šfriendly nitrogenâ€fixing Pseudomonas protegens inoculant in glasshouse fields. Journal of the Science of Food and Agriculture, 2021, , .	3.5	1
23	Engineering <i>Pseudomonas protegens</i> Pfâ€5 to improve its antifungal activity and nitrogen fixation. Microbial Biotechnology, 2020, 13, 118-133.	4.2	38
24	Effect of the nitrogen-fixing bacterium Pseudomonas protegens CHAO-Î"retS-nif on garlic growth under different field conditions. Industrial Crops and Products, 2020, 145, 111982.	5.2	16
25	Promoter Screening Facilitates Heterologous Production of Complex Secondary Metabolites in Burkholderiales Strains. ACS Synthetic Biology, 2020, 9, 457-460.	3.8	18
26	Heterologous redox partners supporting the efficient catalysis of epothilone B biosynthesis by EpoK in Schlegelella brevitalea. Microbial Cell Factories, 2020, 19, 180.	4.0	9
27	Reassembly of the Biosynthetic Gene Cluster Enables High Epothilone Yield in Engineered <i>Schlegelella brevitalea</i> . ACS Synthetic Biology, 2020, 9, 2009-2022.	3.8	12
28	Identification of Holrhizins E–Q Reveals the Diversity of Nonribosomal Lipopeptides in Paraburkholderia rhizoxinica. Journal of Natural Products, 2020, 83, 537-541.	3.0	11
29	Establishment of recombineering genome editing system in Paraburkholderia megapolitana empowers activation of silent biosynthetic gene clusters. Microbial Biotechnology, 2020, 13, 397-405.	4.2	24
30	Genome Mining and Biosynthesis of Primary Amine-Acylated Desferrioxamines in a Marine Gliding Bacterium. Organic Letters, 2020, 22, 939-943.	4.6	14
31	Recombineering for Genetic Engineering of Natural Product Biosynthetic Pathways. Trends in Biotechnology, 2020, 38, 715-728.	9.3	39
32	Attenuation of Pseudomonas aeruginosa Quorum Sensing by Natural Products: Virtual Screening, Evaluation and Biomolecular Interactions. International Journal of Molecular Sciences, 2020, 21, 2190.	4.1	39
33	Heterologous expression of bacterial natural product biosynthetic pathways. Natural Product Reports, 2019, 36, 1412-1436.	10.3	171
34	Biosynthesis of polyketides by <i>trans</i> -AT polyketide synthases in Burkholderiales. Critical Reviews in Microbiology, 2019, 45, 162-181.	6.1	12
35	Expressing cytotoxic compounds in Escherichia coli Nissle 1917 for tumor-targeting therapy. Research in Microbiology, 2019, 170, 74-79.	2.1	48
36	Recombineering Pseudomonas protegens CHAO: An innovative approach that improves nitrogen fixation with impressive bactericidal potency. Microbiological Research, 2019, 218, 58-65.	5.3	16

3

#	Article	IF	CITATIONS
37	Reclassification of 'Polyangium brachysporum' DSM 7029 as Schlegelella brevitalea sp. nov International Journal of Systematic and Evolutionary Microbiology, 2019, 69, 2877-2883.	1.7	30
38	Identification of a contact-dependent growth inhibition system in the probiotic Escherichia coli Nissle 1917. FEMS Microbiology Letters, 2018, 365, .	1.8	8
39	Discovery of recombinases enables genome mining of cryptic biosynthetic gene clusters in Burkholderiales species. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4255-E4263.	7.1	80
40	Yield improvement of epothilones in Burkholderia strain DSM7029 via transporter engineering. FEMS Microbiology Letters, 2018, 365, .	1.8	8
41	Heterologous Expression Guides Identification of the Biosynthetic Gene Cluster of Chuangxinmycin, an Indole Alkaloid Antibiotic. Journal of Natural Products, 2018, 81, 1060-1064.	3.0	24
42	Heterologous Production and Yield Improvement of Epothilones in Burkholderiales Strain DSM 7029. ACS Chemical Biology, 2017, 12, 1805-1812.	3.4	48
43	A Practical Guide to in and Xenorhabdus. Current Topics in Microbiology and Immunology, 2016, 402, 195-213.	1.1	4
44	Simple and rapid direct cloning and heterologous expression of natural product biosynthetic gene cluster in Bacillus subtilis via Red/ET recombineering. Scientific Reports, 2016, 6, 34623.	3.3	31
45	Genetic engineering and heterologous expression of the disorazol biosynthetic gene cluster via Red/ET recombineering. Scientific Reports, 2016, 6, 21066.	3.3	34
46	RecET direct cloning and Red \hat{l}^2 recombineering of biosynthetic gene clusters, large operons or single genes for heterologous expression. Nature Protocols, 2016, 11, 1175-1190.	12.0	132
47	Direct cloning and heterologous expression of the salinomycin biosynthetic gene cluster from Streptomyces albus DSM41398 in Streptomyces coelicolor A3(2). Scientific Reports, 2015, 5, 15081.	3.3	49
48	Two more pieces of the colibactin genotoxin puzzle from Escherichia coli show incorporation of an unusual 1-aminocyclopropanecarboxylic acid moiety. Chemical Science, 2015, 6, 3154-3160.	7.4	59
49	Rational and efficient siteâ€directed mutagenesis of adenylation domain alters relative yields of luminmide derivatives in vivo. Biotechnology and Bioengineering, 2015, 112, 1343-1353.	3.3	22
50	A new recombineering system for Photorhabdus and Xenorhabdus. Nucleic Acids Research, 2015, 43, e36-e36.	14.5	54
51	Heterologous Production of Glidobactins/Luminmycins in <i>Escherichia coli</i> Nissle Containing the Glidobactin Biosynthetic Gene Cluster from <i>Burkholderia</i> DSM7029. ChemBioChem, 2014, 15, 2221-2224.	2.6	38
52	Improved seamless mutagenesis by recombineering using ccdB for counterselection. Nucleic Acids Research, 2014, 42, e37-e37.	14.5	113
53	High-Titer Heterologous Production in E. coli of Lyngbyatoxin, a Protein Kinase C Activator from an Uncultured Marine Cyanobacterium. ACS Chemical Biology, 2013, 8, 1888-1893.	3.4	77
54	In Vivo Evidence for a Prodrug Activation Mechanism during Colibactin Maturation. ChemBioChem, 2013, 14, 1194-1197.	2.6	101

#	Article	IF	CITATIONS
55	Recent advances in the heterologous expression of microbial natural product biosynthetic pathways. Natural Product Reports, 2013, 30, 1121.	10.3	180
56	Novel Recombineering Method Facilitates Cryptic Natural Product Discovery. Planta Medica, 2013, 79, .	1.3	0
57	Luminmycins A–C, Cryptic Natural Products from Photorhabdus luminescens Identified by Heterologous Expression in Escherichia coli. Journal of Natural Products, 2012, 75, 1652-1655.	3.0	48
58	Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. Nature Biotechnology, 2012, 30, 440-446.	17. 5	375
59	Direct Cloning, Genetic Engineering, and Heterologous Expression of the Syringolin Biosynthetic Gene Cluster in <i>E. coli</i> through Red/ET Recombineering. ChemBioChem, 2012, 13, 1946-1952.	2.6	66
60	Rufuslactone, a New Antifungal Sesquiterpene from the Fruiting Bodies of the Basidiomycete Lactarius rufus. Journal of Antibiotics, 2005, 58, 456-459.	2.0	42
61	Biosynthesis of chuangxinmycin featuring a deubiquitinaseâ€like sulfurtransferase. Angewandte Chemie, 0, , .	2.0	1
62	Heterologous expression of bacterial natural product biosynthetic pathways. , 0, .		1
63	Biosynthesis of Glidomides and Elucidation of Different Mechanisms for Formation of βâ€OH Amino Acid Building Blocks. Angewandte Chemie, 0, , .	2.0	0