
Mathieu NSENGA KUMWIMBA

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3044522/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Removal of non-point source pollutants from domestic sewage and agricultural runoff by vegetated drainage ditches (VDDs): Design, mechanism, management strategies, and future directions. Science of the Total Environment, 2018, 639, 742-759.	3.9	128
2	Roles of ammonia-oxidizing bacteria in improving metabolism and cometabolism of trace organic chemicals in biological wastewater treatment processes: A review. Science of the Total Environment, 2019, 659, 419-441.	3.9	93
3	Anammox-based processes: How far have we come and what work remains? A review by bibliometric analysis. Chemosphere, 2020, 238, 124627.	4.2	79
4	Plant soaking decomposition as well as nitrogen and phosphorous release in the water-level fluctuation zone of the Three Gorges Reservoir. Science of the Total Environment, 2017, 592, 527-534.	3.9	43
5	Long-term impact of primary domestic sewage on metal/loid accumulation in drainage ditch sediments, plants and water: Implications for phytoremediation and restoration. Science of the Total Environment, 2017, 581-582, 773-781.	3.9	26
6	Growth characteristics and nutrient removal capability of eco-ditch plants in mesocosm sediment receiving primary domestic wastewater. Environmental Science and Pollution Research, 2017, 24, 23926-23938.	2.7	22
7	Distribution and risk assessment of metals and arsenic contamination in man-made ditch sediments with different land use types. Environmental Science and Pollution Research, 2016, 23, 24808-24823.	2.7	20
8	Potential of invasive watermilfoil (Myriophyllum spp.) to remediate eutrophic waterbodies with organic and inorganic pollutants. Journal of Environmental Management, 2020, 270, 110919.	3.8	19
9	Uptake and Release of Sequestered Nutrient in Subtropical Monsoon Ecological Ditch Plant Species. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	18
10	Assessing the influence of different plant species in drainage ditches on mitigation of non-point source pollutants (N, P, and sediments) in the Purple Sichuan Basin. Environmental Monitoring and Assessment, 2017, 189, 267.	1.3	18
11	Nutrient dynamics and retention in a vegetated drainage ditch receiving nutrient-rich sewage at low temperatures. Science of the Total Environment, 2020, 741, 140268.	3.9	16
12	Nutrient removal in a trapezoidal vegetated drainage ditch used to treat primary domestic sewage in a small catchment of the upper Yangtze River. Water and Environment Journal, 2017, 31, 72-79.	1.0	15
13	Estimation of the removal efficiency of heavy metals and nutrients from ecological drainage ditches treating town sewage during dry and wet seasons. Environmental Monitoring and Assessment, 2017, 189, 434.	1.3	14
14	Metal Distribution and Contamination Assessment in Drainage Ditch Water in the Main Rice/Vegetable Area of Sichuan Hilly Basin. Bulletin of Environmental Contamination and Toxicology, 2016, 96, 248-253.	1.3	12
15	How to enhance the purification performance of traditional floating treatment wetlands (FTWs) at low temperatures: Strengthening strategies. Science of the Total Environment, 2021, 766, 142608.	3.9	12
16	Assessing Nutrient, Biomass, and Sediment Transport of Drainage Ditches in the Three Gorges Reservoir Area. Clean - Soil, Air, Water, 2017, 45, .	0.7	10
17	Nutrient distribution and risk assessment in drainage ditches with different surrounding land uses. Nutrient Cycling in Agroecosystems, 2017, 107, 381-394.	1.1	9
18	Effectiveness of Vegetated Drainage Ditches for Domestic Sewage Effluent Mitigation. Bulletin of Environmental Contamination and Toxicology, 2017, 98, 682-689.	1.3	8

#	Article	IF	CITATIONS
19	Nitrogen Retention in Mesocosm Sediments Received Rural Wastewater Associated with Microbial Community Response to Plant Species. Water (Switzerland), 2020, 12, 3035.	1.2	4