## Bo-Wen Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3044448/publications.pdf Version: 2024-02-01



RO-WEN LILL

| #  | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Advanced Flameâ€Retardant Methods for Polymeric Materials. Advanced Materials, 2022, 34, e2107905.                                                                                                                                     | 21.0 | 209       |
| 2  | A flame-retardant-free and thermo-cross-linkable copolyester: Flame-retardant and anti-dripping mode of action. Polymer, 2014, 55, 2394-2403.                                                                                          | 3.8  | 124       |
| 3  | A novel phosphorus-containing semi-aromatic polyester toward flame retardancy and enhanced mechanical properties of epoxy resin. Chemical Engineering Journal, 2020, 380, 122471.                                                      | 12.7 | 110       |
| 4  | Flame-Retardant multifunctional epoxy resin with high performances. Chemical Engineering Journal, 2022, 427, 132031.                                                                                                                   | 12.7 | 106       |
| 5  | Hierarchical Ti3C2Tx@ZnO Hollow Spheres with Excellent Microwave Absorption Inspired by the Visual Phenomenon of Eyeless Urchins. Nano-Micro Letters, 2022, 14, 76.                                                                    | 27.0 | 99        |
| 6  | Multifunctional Flame-Retardant Melamine-Based Hybrid Foam for Infrared Stealth, Thermal<br>Insulation, and Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2021,<br>13, 26505-26514.                      | 8.0  | 94        |
| 7  | Fully biomass-based aerogels with ultrahigh mechanical modulus, enhanced flame retardancy, and great thermal insulation applications. Composites Part B: Engineering, 2021, 225, 109309.                                               | 12.0 | 75        |
| 8  | Fireâ€Safe Polyesters Enabled by Endâ€Group Capturing Chemistry. Angewandte Chemie - International<br>Edition, 2019, 58, 9188-9193.                                                                                                    | 13.8 | 72        |
| 9  | Carbon Fibers Decorated by Polyelectrolyte Complexes Toward Their Epoxy Resin Composites with<br>High Fire Safety. Chinese Journal of Polymer Science (English Edition), 2018, 36, 1375-1384.                                          | 3.8  | 54        |
| 10 | An ultralow-temperature superelastic polymer aerogel with high strength as a great thermal insulator under extreme conditions. Journal of Materials Chemistry A, 2020, 8, 18698-18706.                                                 | 10.3 | 49        |
| 11 | Novel polyamide 6 composites based on Schiff-base containing phosphonate oligomer: High flame<br>retardancy, great processability and mechanical property. Composites Part A: Applied Science and<br>Manufacturing, 2021, 146, 106423. | 7.6  | 45        |
| 12 | Novel crosslinkable epoxy resins containing phenylacetylene and azobenzene groups: From thermal crosslinking to flame retardance. Polymer Degradation and Stability, 2015, 122, 66-76.                                                 | 5.8  | 42        |
| 13 | Tailoring Schiff base cross-linking by cyano group toward excellent flame retardancy, anti-dripping and smoke suppression of PET. Polymer, 2018, 153, 78-85.                                                                           | 3.8  | 40        |
| 14 | Fully Bio-Based Pressure-Sensitive Adhesives with High Adhesivity Derived from Epoxidized Soybean Oil<br>and Rosin Acid. ACS Sustainable Chemistry and Engineering, 2020, 8, 13261-13270.                                              | 6.7  | 39        |
| 15 | Multifunctional protective aerogel with superelasticity over â~'196 to 500 °C. Nano Research, 2022, 15,<br>7797-7805.                                                                                                                  | 10.4 | 39        |
| 16 | Toughening Epoxy Resin Using a Liquid Crystalline Elastomer for Versatile Application. ACS Applied<br>Polymer Materials, 2019, 1, 2291-2301.                                                                                           | 4.4  | 32        |
| 17 | P-doped PANI/AgMWs nano/micro coating towards high-efficiency flame retardancy and electromagnetic interference shielding. Composites Part B: Engineering, 2022, 238, 109944.                                                          | 12.0 | 30        |
| 18 | Eco-friendly synergistic cross-linking flame-retardant strategy with smoke and melt-dripping suppression for condensation polymers. Composites Part B: Engineering, 2021, 211, 108664.                                                 | 12.0 | 29        |

BO-WEN LIU

| #  | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Controlling Cross-Linking Networks with Different Imidazole Accelerators toward High-Performance<br>Epoxidized Soybean Oil-Based Thermosets. ACS Sustainable Chemistry and Engineering, 2021, 9,<br>3267-3277. | 6.7  | 28        |
| 20 | Semi-aromatic polyamides containing fluorenyl pendent toward excellent thermal stability, mechanical properties and dielectric performance. Polymer, 2021, 224, 123757.                                        | 3.8  | 19        |
| 21 | Effect of biphenyl biimide structure on the thermal stability, flame retardancy and pyrolysis behavior of PET. Polymer Degradation and Stability, 2018, 155, 162-172.                                          | 5.8  | 18        |
| 22 | Bio-based removable pressure-sensitive adhesives derived from carboxyl-terminated polyricinoleate and epoxidized soybean oil. Chinese Chemical Letters, 2021, 32, 875-879.                                     | 9.0  | 17        |
| 23 | A sponge heated by electromagnetic induction and solar energy for quick, efficient, and safe cleanup of high-viscosity crude oil spills. Journal of Hazardous Materials, 2022, 436, 129272.                    | 12.4 | 15        |
| 24 | Thermally induced end-group-capturing as an eco-friendly and general method for enhancing the fire safety of semi-aromatic polyesters. Polymer, 2021, 218, 123430.                                             | 3.8  | 13        |
| 25 | Small change, big impact: Simply tailoring the substitution position towards significant improvement of flame retardancy. Composites Part B: Engineering, 2021, 223, 109109.                                   | 12.0 | 13        |
| 26 | Tuning the Pendent Groups of Semiaromatic Polyamides toward High Performance. Macromolecules, 2020, 53, 3504-3513.                                                                                             | 4.8  | 9         |
| 27 | Eco-friendly and durable flame-retardant coating for cotton fabrics based on dynamic coordination of Ca2+-tannin acid. Progress in Organic Coatings, 2022, 170, 106964.                                        | 3.9  | 9         |
| 28 | New methods for flame-retarding PET without melt dripping. Chinese Science Bulletin, 2020, 65, 3160-3172.                                                                                                      | 0.7  | 7         |
| 29 | Fireâ€Safe Polvesters Enabled by Endâ€Group Capturing Chemistry Angewandte Chemie 2019 131 9286-9291                                                                                                           | 2.0  | 9         |