David D Chaplin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3043740/publications.pdf Version: 2024-02-01

ΠΑΥΙΟ Ο CHADLIN

#	Article	IF	CITATIONS
1	Distal airway microbiome is associated with immunoregulatory myeloid cell responses in lung transplant recipients. Journal of Heart and Lung Transplantation, 2018, 37, 206-216.	0.3	16
2	Unique Lipid Signatures of Extracellular Vesicles from the Airways of Asthmatics. Scientific Reports, 2018, 8, 10340.	1.6	86
3	Subsets of airway myeloid-derived regulatory cells distinguish mild asthma from chronic obstructive pulmonary disease. Journal of Allergy and Clinical Immunology, 2015, 135, 413-424.e15.	1.5	25
4	IL-22–producing neutrophils contribute to antimicrobial defense and restitution of colonic epithelial integrity during colitis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12768-12773.	3.3	301
5	Vitronectin Inhibits Neutrophil Apoptosis through Activation of Integrin-Associated Signaling Pathways. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 790-796.	1.4	31
6	Inflammasome-Derived IL-1β Regulates the Production of GM-CSF by CD4+ T Cells and γδT Cells. Journal of Immunology, 2012, 188, 3107-3115.	0.4	108
7	Toll-Like Receptor 4 Engagement Inhibits Adenosine 5′-Monophosphate-Activated Protein Kinase Activation through a High Mobility Group Box 1 Protein-Dependent Mechanism. Molecular Medicine, 2012, 18, 659-668.	1.9	61
8	Regulatory role of antigen-induced interleukin-10, produced by CD4+ T cells, in airway neutrophilia in a murine model for asthma. European Journal of Pharmacology, 2012, 677, 154-162.	1.7	27
9	AMPâ€activated protein kinase enhances the phagocytic ability of macrophages and neutrophils. FASEB Journal, 2011, 25, 4358-4368.	0.2	113
10	Important role of neutrophils in the late asthmatic response in mice. Life Sciences, 2011, 88, 1127-1135.	2.0	36
11	Elevated levels of NO are localized to distal airways in asthma. Free Radical Biology and Medicine, 2011, 50, 1679-1688.	1.3	20
12	Inhibition of the catalytic function of activation-induced cytidine deaminase promotes apoptosis of germinal center B cells in BXD2 mice. Arthritis and Rheumatism, 2011, 63, 2038-2048.	6.7	29
13	Neutrophils Produce Interleukin 17A (IL-17A) in a Dectin-1- and IL-23-Dependent Manner during Invasive Fungal Infection. Infection and Immunity, 2011, 79, 3966-3977.	1.0	156
14	Inhibition of neutrophil apoptosis by PAI-1. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 301, L247-L254.	1.3	35
15	Follicular Dendritic Cell Makes Environmental Sense. Immunity, 2010, 33, 2-4.	6.6	8
16	Marginal Zone Precursor B Cells as Cellular Agents for Type I IFN–Promoted Antigen Transport in Autoimmunity. Journal of Immunology, 2010, 184, 442-451.	0.4	35
17	Overview of the immune response. Journal of Allergy and Clinical Immunology, 2010, 125, S3-S23.	1.5	1,318
18	Tumor Immune Evasion. Science, 2010, 328, 697-698.	6.0	48

DAVID D CHAPLIN

#	Article	IF	CITATIONS
19	Critical Role of Macrophages and Their Activation via MyD88-NFκB Signaling in Lung Innate Immunity to Mycoplasma pneumoniae. PLoS ONE, 2010, 5, e14417.	1.1	63
20	MMP induced by Grâ€1 ⁺ cells are crucial for recruitment of Th cells into the airways. European Journal of Immunology, 2009, 39, 2281-2292.	1.6	12
21	The Lymphotoxin LTα1β2 Controls Postnatal and Adult Spleen Marginal Sinus Vascular Structure and Function. Immunity, 2009, 30, 408-420.	6.6	40
22	Interleukin 17–producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nature Immunology, 2008, 9, 166-175.	7.0	639
23	Targeted deletion of the murine <i>corneodesmosin</i> gene delineates its essential role in skin and hair physiology. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6720-6724.	3.3	55
24	Overview of Immunology in the MouseMolecular and Cellular Immunology. , 2007, , 1-55.		1
25	Antigen and Lipopolysaccharide Play Synergistic Roles in the Effector Phase of Airway Inflammation in Mice. American Journal of Pathology, 2006, 168, 1425-1434.	1.9	24
26	1. Overview of the human immune response. Journal of Allergy and Clinical Immunology, 2006, 117, S430-S435.	1.5	91
27	Taking Control of Follicular Dendritic Cells. Immunity, 2006, 24, 13-15.	6.6	8
28	CD70+ antigen-presenting cells control the proliferation and differentiation of T cells in the intestinal mucosa. Nature Immunology, 2005, 6, 698-706.	7.0	100
29	Induction of a late asthmatic response associated with airway inflammation in mice. European Journal of Pharmacology, 2005, 521, 144-155.	1.7	42
30	1. Overview of the immune response. Journal of Allergy and Clinical Immunology, 2003, 111, S442-S459.	1.5	62
31	Isolated Lymphoid Follicle Formation Is Inducible and Dependent Upon Lymphotoxin-Sufficient B Lymphocytes, Lymphotoxin β Receptor, and TNF Receptor I Function. Journal of Immunology, 2003, 170, 5475-5482.	0.4	259
32	Intravital microscopy comparing T lymphocyte trafficking to the spleen and the mesenteric lymph node. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H2213-H2226.	1.5	44
33	IgE Cross-Linking or Lipopolysaccharide Treatment Induces Recruitment of Th2 Cells to the Lung in the Absence of Specific Antigen. Journal of Immunology, 2002, 169, 5468-5476.	0.4	27
34	Nonhematopoietic Expression of Janus Kinase 3 Is Required for Efficient Recruitment of Th2 Lymphocytes and Eosinophils in OVA-Induced Airway Inflammation. Journal of Immunology, 2002, 168, 2475-2482.	0.4	13
35	Cell Cooperation in Development of Eosinophil-Predominant Inflammation in Airways. Immunologic Research, 2002, 26, 055-062.	1.3	16
36	Regulation of Spleen White Pulp Structure and Function by Lymphotoxin. Advances in Experimental Medicine and Biology, 2002, 512, 49-56.	0.8	7

DAVID D CHAPLIN

#	Article	IF	CITATIONS
37	IL-1Î ² Is Essential for Langerhans Cell Activation and Antigen Delivery to the Lymph Nodes during Contact Sensitization: Evidence for a Dermal Source of IL-1Î ² . Cellular Immunology, 2001, 211, 105-112.	1.4	39
38	Confocal fluorescent intravital microscopy of the murine spleen. Journal of Immunological Methods, 2001, 256, 55-63.	0.6	24
39	Signaling Through TNF Receptor p55 in TNF.α-Deficient Mice Alters the CXCL13/CCL19/CCL21 Ratio in the Spleen and Induces Maturation and Migration of Anergic B Cells into the B Cell Follicle. Journal of Immunology, 2001, 167, 1920-1928.	0.4	27
40	Essential Role of Lymph Nodes in Contact Hypersensitivity Revealed in Lymphotoxin-α–Deficient Mice. Journal of Experimental Medicine, 2001, 193, 1227-1238.	4.2	54
41	Antigen persistence is required for somatic mutation and affinity maturation of immunoglobulin. European Journal of Immunology, 2000, 30, 2226-2234.	1.6	49
42	Lymphotoxin-α-Dependent Spleen Microenvironment Supports the Generation of Memory B Cells and Is Required for Their Subsequent Antigen-Induced Activation. Journal of Immunology, 2000, 164, 2508-2514.	0.4	61
43	Could Asthma Be Worsened by Stimulating the T-helper Type 1 Immune Response?. American Journal of Respiratory Cell and Molecular Biology, 2000, 22, 143-146.	1.4	56
44	DEVELOPMENT AND MATURATION OF SECONDARY LYMPHOID TISSUES. Annual Review of Immunology, 1999, 17, 399-433.	9.5	613
45	The Role of CCR7 in TH1 and TH2 Cell Localization and Delivery of B Cell Help in Vivo. Science, 1999, 286, 2159-2162.	6.0	170
46	Cooperation between Th1 and Th2 cells in a murine model of eosinophilic airway inflammation. Journal of Clinical Investigation, 1999, 104, 1021-1029.	3.9	283
47	Cytokine regulation of secondary lymphoid organ development. Current Opinion in Immunology, 1998, 10, 289-297.	2.4	113
48	B Lymphocytes Induce the Formation of Follicular Dendritic Cell Clusters in a Lymphotoxin α–dependent Fashion. Journal of Experimental Medicine, 1998, 187, 1009-1018.	4.2	272
49	Distinct Roles of Lymphotoxin α and the Type I Tumor Necrosis Factor (TNF) Receptor in the Establishment of Follicular Dendritic Cells from Non–Bone Marrow–derived Cells. Journal of Experimental Medicine, 1997, 186, 1997-2004.	4.2	122
50	Lymphotoxin-α (LTα) Supports Development of Splenic Follicular Structure That Is Required for IgG Responses. Journal of Experimental Medicine, 1997, 185, 2111-2120.	4.2	179
51	Lymphotoxin-alpha-deficient and TNF receptor-I-deficient mice define developmental and functional characteristics of germinal centers. Immunological Reviews, 1997, 156, 137-144.	2.8	133
52	Affinity maturation without germinal centres in lymphotoxin-α-deficient mice. Nature, 1996, 382, 462-466.	13.7	313
53	Construction of a genomic DNA â€~feature map' by sequencing from nested deletions: application to the HLA class I region. Nucleic Acids Research, 1995, 23, 117-122.	6.5	11
54	Restriction map of a 35-kb HLA fragment constructed by nested deletion â€~drop-out' mapping. Gene, 1995, 164, 335-339.	1.0	3

4

DAVID D CHAPLIN

Article	IF	CITATIONS
Feature Mapping of the HLA Class I Region: Localization of thePOU5F1andTCF19Genes. Genomics, 1995, 30, 53-58.	1.3	35
A Novel Creb Family Gene Telomeric of HLA-DRA in the HLA Complex. Genomics, 1995, 30, 149-156.	1.3	34
An NFIL-6 Sequence Near the Transcriptional Initiation Site Is Necessary for the Lipopolysaccharide Induction of Murine Interleukin-lβ. DNA and Cell Biology, 1994, 13, 561-569.	0.9	18
Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science, 1994, 264, 703-707.	6.0	930
Regulation of IL-1 gene expression: Differential responsiveness of murine macrophage lines. Cytokine, 1993, 5, 327-335.	1.4	20
Highly Informative Typing of the Human TNF Locus Using Six Adjacent Polymorphic Markers. Genomics, 1993, 16, 180-186.	1.3	272
Chromosomal Localization of Five Murine HSP70 Gene Family Members: Hsp70.1, Hsp70-2, Hsp70-3, Hsc70t, and Grp78. Genomics, 1993, 16, 193-198.	1.3	75
Molecular linkage of the HLA-DR, HLA-DQ, and HLA-DO genes in yeast artificial chromosomes. Genomics, 1991, 11, 577-586.	1.3	8
TheB144-H-2D binterval and the location of a mouse homologue of the human D6S81E locus. Immunogenetics, 1990, 32, 200-204.	1.2	20
Interleukin-1 ? and ? genes: linkage on chromosome 2 in the mouse. Immunogenetics, 1987, 26, 339-343.	1.2	71
Deletion of C4A genes in patients with systemic lupus erythematosus. Arthritis and Rheumatism, 1987, 30, 1015-1022.	6.7	124
Molecular Analysis of 21-Hydroxylase Gene Expression in Mouse Adrenal Cells. Endocrine Research, 1986, 12, 409-427.	0.6	12
Molecular Organization and in vitro Expression of Murine Class III Genes. Immunological Reviews, 1985, 87, 61-80.	2.8	16
Two steroid 21-hydroxylase genes are located in the murine S region. Nature, 1984, 312, 465-467.	13.7	141
Expression of hemolytically active murine fourth component of complement in transfected L cells. Cell, 1984, 37, 569-576.	13.5	37
Inhibition of lectin-induced lymphocyte activation by diamide and other sulfhydryl reagents. Cellular Immunology, 1978, 36, 303-311.	1.4	50
THE EFFECTS OF THROMBIN ON PHYTOHEMAGGLUTININ RECEPTOR SITES IN HUMAN PLATELETS. Journal of Cell Biology, 1974, 60, 541-553.	2.3	48
	Feature Mapping of the HLA Class I Region: Localization of thePOUJ5F1andTCF19Genes. Genomics, 1995, 30, 149-156. A Novel Creb Family Gene Telomeric of HLA-DRA in the HLA Complex. Genomics, 1995, 30, 149-156. An NPLL-6 Sequence Near the Transcriptional Initiation Site Is Necessary for the Lipopolysaccharide Induction of Murine Interleukin-IP. DNA and Cell Biology, 1994, 13, 561-569. Abnormal development of peripheral lymphold organs in mice deficient in lymphotoxin. Science, 1994, 264, 703-707. Regulation of IL-1 gene expression: Differential responsiveness of murine macrophage lines. Cytokine, 1993, 16, 180-186. Chromosomal Localization of Five Murine HSP70 Gene Family Members: Hsp70.1, Hsp70-2, Hsp70-3, Hsc70t, and Grp78. Genomics, 1993, 16, 193-198. Molecular Inhage of the HLA-DR, HLA-DQ, and HLA-DO genes in yeast artificial chromosomes. Genomics, 1991, 11, 577-586. TheH144H-2D Interval and the location of a mouse homologue of the human D6S81E locus. Interleukin-1 ? and ? genes: Inhage on chromosome 2 in the mouse, Immunogenetics, 1987, 26, 339-343. Deletion of C4A genes in patients with systemic lupus erythematosus. Arthritis and Rheumatism, 1987, 30, 1051022. Molecular Analysis of 21-Hydroxylase Gene Expression in Mouse Adrenal Cells. Endocrine Research, 1986, 12, 409-427. Molecular Organization and in vitro Expression of Murine Class III Genes. Immunological Reviews, 1985, 87, 61-80. Two steroid 21-hydroxylase genes are located in the murine S region, Nature, 1984, 312, 465-467. Expression of hemolytically active murine fourth component of co	Feature Mapping of the HLA Class I Region: Localization of thePOU5F1andTCF19Genes. Genomics, 1995, 30, 149-156.1.3A Novel Creb Family Cene Telomeric of HLA-DRA in the HLA Complex. Genomics, 1995, 30, 149-156.1.3An NFL-G Sequence Near the Transcriptional Initiation Site Is Necessary for the Lipopolysaccharide Induction of Murine Interleukinille. DNA and Cell Biology, 1994, 13, 561-569.0.9Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science, 1994, 264, 703-707.6.0Regulation of IL-1 gene expression: Differential responsiveness of murine macrophage lines. Cytokine, 1993, 16, 180-186.1.4Highly Informative Typing of the Human TNF Locus Using Six Adjacent Polymorphic Markers. Genomics, 1993, 16, 180-186.1.3Chromosomal Localization of Five Murine HSP70 Gene Family Members: Hsp70.1, Hsp70-2, Hsp70-3. Hsc70t, and Cp78. Genomics, 1993, 16, 193-198.1.3Molecular linkage of the HLA-DR, HLA-DQ, and HLA-DO genes in yeast artificial chromosomes. Cenomics, 1991, 11, 577-586.1.2Interleukin-1 ? and ? genes: linkage on chromosome 2 in the mouse. Immunogenetics, 1987, 26, 339-343.1.2Dolettor of CAA genes in patients with systemic lupus erythematosus. Arthritis and Rheumatism, 1987, 03, 1015-1022.2.8Molecular Analysis of 21-Hydroxylase Gene Expression in Mouse Adrenal Cells. Endocrine Research, 1986, 12, 409-427.2.8Two steroid 21-hydroxylase genes are located in the murine S region. Nature, 1984, 312, 465-467.1.3Lecular Organization and in vitro Expression of Murine Class III Genes. Immunological Reviews, 1995, 57, 61-80.2.8Two steroid 21-hydroxylase genes are located in the murine S region. Nat