Jinyou Lin

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3043410/jinyou-lin-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

50 2,202 24 46 g-index

50 2,463 7.1 5.08 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
50	A biodegradable composite filter made from electrospun zein fibers underlaid on the cellulose paper towel <i>International Journal of Biological Macromolecules</i> , 2022 , 204, 419-428	7.9	2
49	Characterization of Closed Pores in Longmaxi Shale by Synchrotron Small-Angle X-ray Scattering. <i>Energy & Energy & Energ</i>	4.1	5
48	Hierarchically Structured Nanocellulose-Implanted Air Filters for High-Efficiency Particulate Matter Removal. <i>ACS Applied Materials & Discrete Materials</i> (13, 12408-12416)	9.5	11
47	A tunable alkaline/oxidative process for cellulose nanofibrils exhibiting different morphological, crystalline properties. <i>Carbohydrate Polymers</i> , 2021 , 259, 117755	10.3	2
46	Flow Analysis of Regenerated Silk Fibroin/Cellulose Nanofiber Suspensions via a Bioinspired Microfluidic Chip. <i>Advanced Materials Technologies</i> , 2021 , 6, 2100124	6.8	5
45	Insight into levofloxacin loaded biocompatible electrospun scaffolds for their potential as conjunctival substitutes. <i>Carbohydrate Polymers</i> , 2021 , 269, 118341	10.3	3
44	An ultralow base weight of nanocellulose boosting filtration performance of hierarchical composite air filter inspired by native spider web. <i>Composites Part B: Engineering</i> , 2021 , 226, 109342	10	1
43	Utilization of discarded crop straw to produce cellulose nanofibrils and their assemblies. <i>Journal of Bioresources and Bioproducts</i> , 2020 , 5, 26-36	18.7	79
42	Surface modified electrospun poly(lactic acid) fibrous scaffold with cellulose nanofibrils and Ag nanoparticles for ocular cell proliferation and antimicrobial application. <i>Materials Science and Engineering C</i> , 2020 , 111, 110767	8.3	22
41	An evoluted bio-based 2,5-furandicarboxylate copolyester fiber from poly(ethylene terephthalate). <i>Journal of Polymer Science</i> , 2020 , 58, 320-329	2.4	4
40	Isolation of hierarchical cellulose building blocks from natural flax fibers as a separation membrane barrier. <i>International Journal of Biological Macromolecules</i> , 2020 , 155, 666-673	7.9	3
39	Facile and quick formation of cellulose nanopaper with nanoparticles and its characterization. <i>Carbohydrate Polymers</i> , 2019 , 221, 195-201	10.3	3
38	Electric field distribution and initial jet motion induced by spinneret configuration for molecular orientation in electrospun fibers. <i>European Polymer Journal</i> , 2018 , 98, 330-336	5.2	13
37	Layer-by-layer self-assembly of aramid nanofibers on nonwoven fabric for liquid filtration. <i>Polymer Composites</i> , 2018 , 39, 2411-2419	3	8
36	Improving waterproof/breathable performance of electrospun poly(vinylidene fluoride) fibrous membranes by thermo-pressing. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2018 , 56, 36-45	2.6	19
35	Micro-fluid through aramid/cellulose nanocomposite membranes and its filtration efficiency. <i>Thermal Science</i> , 2018 , 22, 1691-1697	1.2	
34	Coiled Plant Tendril Bioinspired Fabrication of Helical Porous Microfibers for Crude Oil Cleanup. <i>Global Challenges</i> , 2017 , 1, 1600021	4.3	10

(2013-2016)

33	A hierarchical and gradient structured supersorbent comprising three-dimensional interconnected porous fibers for efficient oil spillage cleanup. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 9635-9643	13	25
32	Cellulose nanofibrils extracted from the byproduct of cotton plant. <i>Carbohydrate Polymers</i> , 2016 , 136, 841-50	10.3	50
31	Effect of electric field on the morphology and mechanical properties of electrospun fibers. <i>RSC Advances</i> , 2016 , 6, 50666-50672	3.7	15
30	Tuning the mechanical properties of cellulose nanofibrils reinforced polyvinyl alcohol composites via altering the cellulose polymorphs. <i>RSC Advances</i> , 2016 , 6, 83356-83365	3.7	19
29	New Insights into the Correlation between Morphology, Excited State Dynamics, and Device Performance of Small Molecule Organic Solar Cells. <i>Advanced Energy Materials</i> , 2016 , 6, 1600961	21.8	27
28	In situ polymerization of biodegradable poly(butylene-co-succinate terephthlate) nanocomposites and their real-time tracking of microstructure. <i>Composites Science and Technology</i> , 2015 , 117, 121-129	8.6	8
27	Enhanced mechanical and hydrophobic properties of polyimide fibers containing benzimidazole and benzoxazole units. <i>European Polymer Journal</i> , 2015 , 67, 88-98	5.2	46
26	Bioinspired Thermoresponsive Photonic Polymers with Hierarchical Structures and Their Unique Properties. <i>Macromolecular Rapid Communications</i> , 2015 , 36, 1722-8	4.8	13
25	Strain-induced crystallization of polyimide fibers containing 2-(4-aminophenyl)-5-aminobenzimidazole moiety. <i>Polymer</i> , 2015 , 75, 178-186	3.9	44
24	Pectin/lysozyme bilayers layer-by-layer deposited cellulose nanofibrous mats for antibacterial application. <i>Carbohydrate Polymers</i> , 2015 , 117, 687-693	10.3	69
23	Synchronous stimuli of biodegradable poly(butylene succinate-co-terephthalate) copolymer via uniaxial stretching at varying temperatures. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2015 , 53, 640-649	2.6	6
22	Structure and properties of polyimide fibers containing benzimidazole and Amide Units. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2015 , 53, 183-191	2.6	25
21	Cellulose nanofibrils aerogels generated from jute fibers. Carbohydrate Polymers, 2014, 109, 35-43	10.3	55
20	Evolution of the microstructure and morphology of polyimide fibers during heat-drawing process. <i>RSC Advances</i> , 2014 , 4, 44666-44673	3.7	24
19	Cellulose nanofibrils generated from jute fibers with tunable polymorphs and crystallinity. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 6402	13	61
18	Lamellae evolution of poly(butylene succinate-co-terephthalate) copolymer induced by uniaxial stretching and subsequent heating. <i>RSC Advances</i> , 2014 , 4, 64625-64633	3.7	14
17	Structure and properties of novel regenerated cellulose fibers prepared in NaOH complex solution. <i>Carbohydrate Polymers</i> , 2013 , 98, 1031-8	10.3	28
16	Facile synthesis of robust amphiphobic nanofibrous membranes. <i>Applied Surface Science</i> , 2013 , 276, 75	0 <i>-1</i> 7.5	8

15	Co-axial electrospun polystyrene/polyurethane fibres for oil collection from water surface. <i>Nanoscale</i> , 2013 , 5, 2745-55	7.7	120
14	Nanoporous polystyrene fibers for oil spill cleanup. <i>Marine Pollution Bulletin</i> , 2012 , 64, 347-52	6.7	221
13	Mechanical robust and thermal tolerant nanofibrous membrane for nanoparticles removal from aqueous solution. <i>Materials Letters</i> , 2012 , 69, 82-85	3.3	21
12	Facile control of intra-fiber porosity and inter-fiber voids in electrospun fibers for selective adsorption. <i>Nanoscale</i> , 2012 , 4, 5316-20	7.7	95
11	Biomimicry via Electrospinning. <i>Critical Reviews in Solid State and Materials Sciences</i> , 2012 , 37, 94-114	10.1	84
10	Subtle regulation of the micro- and nanostructures of electrospun polystyrene fibers and their application in oil absorption. <i>Nanoscale</i> , 2012 , 4, 176-82	7.7	168
9	Fabrication of biomimetic superhydrophobic surfaces inspired by lotus leaf and silver ragwort leaf. <i>Nanoscale</i> , 2011 , 3, 1258-62	7.7	160
8	Nanoparticle decorated fibrous silica membranes exhibiting biomimetic superhydrophobicity and highly flexible properties. <i>RSC Advances</i> , 2011 , 1, 1482	3.7	61
7	Investigation of silica nanoparticle distribution in nanoporous polystyrene fibers. <i>Soft Matter</i> , 2011 , 7, 8376	3.6	59
6	Three-dimensional sensing membrane functionalized quartz crystal microbalance biosensor for chloramphenicol detection in real time. <i>Sensors and Actuators B: Chemical</i> , 2011 , 160, 428-434	8.5	28
5	One-step electro-spinning/netting technique for controllably preparing polyurethane nano-fiber/net. <i>Macromolecular Rapid Communications</i> , 2011 , 32, 1729-34	4.8	71
4	Nanoporous polystyrene fibers functionalized by polyethyleneimine for enhanced formaldehyde sensing. <i>Sensors and Actuators B: Chemical</i> , 2011 , 152, 316-323	8.5	67
3	Direct fabrication of highly nanoporous polystyrene fibers via electrospinning. <i>ACS Applied Materials & ACS Applied & ACS Applied Materials & ACS Applied & ACS App</i>	9.5	227
2	Enhanced Mechanical Properties of Superhydrophobic Microfibrous Polystyrene Mats via Polyamide 6 Nanofibers. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 20452-20457	3.8	92

¹ Controllable Generation of Renewable Nanofibrils from Green Materials and Their Application in Nanocomposites 61-108