Eevi Rintamäki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3043287/publications.pdf

Version: 2024-02-01

52 3,293 29 papers citations h-index

56 56 2835
all docs docs citations times ranked citing authors

47

g-index

#	Article	IF	CITATIONS
1	Two chloroplast thioredoxin systems differentially modulate photosynthesis in Arabidopsis depending on light intensity and leaf age. Plant Journal, 2020, 104, 718-734.	5.7	19
2	Dissecting the interaction of photosynthetic electron transfer with mitochondrial signalling and hypoxic response in the Arabidopsis $\langle i \rangle$ mutant. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190413.	4.0	15
3	Chloroplast thioredoxin systems dynamically regulate photosynthesis in plants. Biochemical Journal, 2019, 476, 1159-1172.	3.7	77
4	Multilevel regulation of nonâ€photochemical quenching andÂstate transitions by chloroplast NADPHâ€dependent thioredoxin reductase. Physiologia Plantarum, 2019, 166, 211-225.	5.2	19
5	Arabidopsis RCD1 coordinates chloroplast and mitochondrial functions through interaction with ANAC transcription factors. ELife, 2019, 8 , .	6.0	118
6	Regulation of cyclic electron flow by chloroplast <scp>NADPH</scp> â€dependent thioredoxin system. Plant Direct, 2018, 2, e00093.	1.9	61
7	Chloroplast thioredoxin systems: prospects for improving photosynthesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160474.	4.0	50
8	Crosstalk between chloroplast thioredoxin systems in regulation of photosynthesis. Plant, Cell and Environment, 2016, 39, 1691-1705.	5.7	102
9	Changing the light environment: chloroplast signalling and response mechanisms. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130220.	4.0	28
10	Thioredoxin-dependent regulatory networks in chloroplasts under fluctuating light conditions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130224.	4.0	91
11	Posttranslational Influence of NADPH-Dependent Thioredoxin Reductase C on Enzymes in Tetrapyrrole Synthesis Â. Plant Physiology, 2013, 162, 63-73.	4.8	114
12	Overexpression of chloroplast NADPH-dependent thioredoxin reductase in Arabidopsis enhances leaf growth and elucidates in vivo function of reductase and thioredoxin domains. Frontiers in Plant Science, 2013, 4, 389.	3.6	58
13	Deletion of chloroplast NADPH-dependent thioredoxin reductase results in inability to regulate starch synthesis and causes stunted growth under short-day photoperiods. Journal of Experimental Botany, 2013, 64, 3843-3854.	4.8	76
14	Retrograde signaling from functionally heterogeneous plastids. Frontiers in Plant Science, 2012, 3, 286.	3.6	16
15	Coordination of Plastid and Light Signaling Pathways upon Development of Arabidopsis Leaves under Various Photoperiods. Molecular Plant, 2012, 5, 799-816.	8.3	52
16	Implication of chlorophyll biosynthesis on chloroplast-to-nucleus retrograde signaling. Plant Signaling and Behavior, 2009, 4, 545-547.	2.4	9
17	Chloroplast NADPH-Thioredoxin Reductase Interacts with Photoperiodic Development in Arabidopsis Â. Plant Physiology, 2009, 149, 1261-1276.	4.8	143
18	Comparative analysis of leafâ€type ferredoxinâ€NADP ⁺ oxidoreductase isoforms in <i>Arabidopsis thaliana</i> . Plant Journal, 2009, 57, 1103-1115.	5.7	57

#	Article	IF	Citations
19	Diverse roles for chloroplast stromal and thylakoid-bound ascorbate peroxidases in plant stress responses. Biochemical Journal, 2008, 412, 275-285.	3.7	159
20	Chloroplastic NADPH Thioredoxin Reductase Mediates Photoperiod-Dependent Development of Leaves in Arabidopsis., 2008,, 1303-1306.		0
21	Structural and functional characterization of ferredoxin-NADP+-oxidoreductase using knock-out mutants of Arabidopsis. Plant Journal, 2007, 49, 1041-1052.	5.7	89
22	LHC II protein phosphorylation in leaves of Arabidopsis thaliana mutants deficient in non-photochemical quenching. Photosynthesis Research, 2005, 84, 217-223.	2.9	11
23	Dynamics of photosystem II: a proteomic approach to thylakoid protein complexes. Journal of Experimental Botany, 2004, 56, 347-356.	4.8	433
24	Plant Response to Stress: Modifications of the Photosynthetic Apparatus., 2004,, 990-994.		0
25	Photosystem II protein phosphorylation follows four distinctly different regulatory patterns induced by environmental cues. Plant, Cell and Environment, 2003, 26, 1995-2003.	5 . 7	25
26	Ascorbate-Mediated LHCII Protein PhosphorylationLHCII Kinase Regulation in Light and in Darknessâ€. Biochemistry, 2003, 42, 5828-5836.	2.5	28
27	Dithiol Oxidant and Disulfide Reductant Dynamically Regulate the Phosphorylation of Light-Harvesting Complex II Proteins in Thylakoid Membranes. Plant Physiology, 2003, 133, 37-46.	4.8	43
28	Environmental and metaboliccontrol of LHCII protein phosphorylation: revealing the mechanismsfor dual regulation of the LHCII kinase. Plant, Cell and Environment, 2002, 25, 1515-1525.	5.7	23
29	Influence of protein phosphorylation on the electron-transport properties of Photosystem II. Photosynthesis Research, 2002, 74, 61-72.	2.9	15
30	Coregulation of light-harvesting complex II phosphorylation and lhcb mRNA accumulation in winter rye. Plant Journal, 2001, 26, 317-327.	5.7	94
31	Phosphorylation of Photosystem II Proteins. , 2001, , 395-418.		5
32	Cooperative regulation of light-harvesting complex II phosphorylation via the plastoquinol and ferredoxin-thioredoxin system in chloroplasts. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 11644-11649.	7.1	272
33	Thylakoid Protein Phosphorylation and the Thiol Redox State. Biochemistry, 1999, 38, 3197-3204.	2.5	53
34	Title is missing!. Photosynthesis Research, 1998, 58, 143-151.	2.9	36
35	Thylakoid protein phosphorylation in evolutionally divergent species with oxygenic photosynthesis. FEBS Letters, 1998, 423, 178-182.	2.8	71
36	Reversible phosphorylation of LHCII proteins in rye leaves â€" redox control and physiological significance. , 1998, , 1903-1906.		2

#	Article	IF	CITATIONS
37	The Nuclear-Encoded PsbW Protein Subunit of Photosystem II Undergoes Light-Induced Proteolysis. Biochemistry, 1997, 36, 12666-12671.	2.5	29
38	Phosphorylation of Light-harvesting Complex II and Photosystem II Core Proteins Shows Different Irradiance-dependent Regulation in Vivo. Journal of Biological Chemistry, 1997, 272, 30476-30482.	3.4	233
39	Transcriptional and Translational Adjustments of Psba Gene Expression in Mature Chloroplasts During Photoinhibition and Subsequent Repair of Photosystem II. FEBS Journal, 1997, 247, 441-448.	0.2	65
40	Protein phosphorylation and magnesium status regulate the degradation of the D1 reaction centre protein of Photosystem II. Plant Science, 1996, 115, 175-182.	3.6	17
41	Differential D1 Dephosphorylation in Functional and Photodamaged Photosystem II Centers. Journal of Biological Chemistry, 1996, 271, 14870-14875.	3.4	176
42	Regulation of D1-protein degradation during photoinhibition of photosystem II in vivo: Phosphorylation of the D1 protein in various plant groups. Planta, 1995, 195, 379.	3.2	73
43	Light-dependent phosphorylation of D1 reaction centre protein of photosystem II: hypothesis for the functional role in vivo. Physiologia Plantarum, 1995, 93, 191-195.	5.2	47
44	Rapid turnover of the D1 reaction-center protein of photosystem II as a protection mechanism against photoinhibition in a moss, Ceratodon purpureus (Hedw.) Brid Planta, 1994, 193, 520-529.	3.2	51
45	Combined Effects of Partial Defoliation and Nutrient Availability on Cloned Betula pendula Saplings. Journal of Experimental Botany, 1993, 44, 1395-1402.	4.8	38
46	Formation of Disulphide Cross-Linked Aggregates of Large Subunit from Higher Plant Ribulose-1, 5-Bisphosphate Carboxylase-Oxygenase. Journal of Experimental Botany, 1989, 40, 1305-1313.	4.8	10
47	Comparison of the specific activity of ribulose-1,5-bis-phosphate carboxylase-oxygenase from some C3 and C4 plants. Physiologia Plantarum, 1988, 74, 326-331.	5. 2	40
48	Relationship between chloroplast structure and O2 evolution rate of leaf discs in plants from different biotopes in South Finland. Plant, Cell and Environment, 1986, 9, 87-94.	5.7	21
49	Expression and mutagenesis of genes for ribulose-1,5-bisphosphate carboxylase. Biochemical Society Transactions, 1986, 14, 1223-1223.	3.4	0
50	DIEL AND SEASONAL CHANGES IN THE CHLOROPLAST ULTRASTRUCTURE OF DESCHAMPSIA FLEXUOSA (L.) TRIN New Phytologist, 1985, 100, 537-548.	7.3	6
51	Photosynthetic and Photorespiratory Enzymes in Widely Divergent Plant Species with Special Reference to the MossCeratodon purpureus: Properties of Ribulose Bisphosphate Carboxylase/Oxygenase, Phosphoenolpyruvate Carboxylase and Glycolate Oxidase. Journal of Experimental Botany, 1985. 36. 1677-1684.	4.8	9
52	Leaf and chloroplast structure of two aquatic Ranunculus species. Aquatic Botany, 1982, 12, 13-22.	1.6	7