Matthias Ballmaier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3042907/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A New Population of Myeloid-Derived Suppressor Cells in Hepatocellular Carcinoma Patients Induces CD4+CD25+Foxp3+ T Cells. Gastroenterology, 2008, 135, 234-243.	1.3	722
2	c-mpl mutations are the cause of congenital amegakaryocytic thrombocytopenia. Blood, 2001, 97, 139-146.	1.4	327
3	Robust Salmonella metabolism limits possibilities for new antimicrobials. Nature, 2006, 440, 303-307.	27.8	327
4	Incidence of CSF3R mutations in severe congenital neutropenia and relevance for leukemogenesis: results of a long-term survey. Blood, 2007, 109, 93-99.	1.4	202
5	A high-throughput sequencing test for diagnosing inherited bleeding, thrombotic, and platelet disorders. Blood, 2016, 127, 2791-2803.	1.4	157
6	<i>MYH9</i> -Related Disease: A Novel Prognostic Model to Predict the Clinical Evolution of the Disease Based on Genotype-Phenotype Correlations. Human Mutation, 2014, 35, 236-247.	2.5	154
7	Congenital Amegakaryocytic Thrombocytopenia: Clinical Presentation, Diagnosis, and Treatment. Seminars in Thrombosis and Hemostasis, 2011, 37, 673-681.	2.7	124
8	Thrombopoietin in Patients With Congenital Thrombocytopenia and Absent Radii: Elevated Serum Levels, Normal Receptor Expression, But Defective Reactivity to Thrombopoietin. Blood, 1997, 90, 612-619.	1.4	121
9	Novel HAX1 mutations in patients with severe congenital neutropenia reveal isoform-dependent genotype-phenotype associations. Blood, 2008, 111, 4954-4957.	1.4	121
10	Activated human hepatic stellate cells induce myeloid derived suppressor cells from peripheral blood monocytes in a CD44-dependent fashion. Journal of Hepatology, 2013, 59, 528-535.	3.7	117
11	Congenital amegakaryocytic thrombocytopenia: a retrospective clinical analysis of 20 patients. British Journal of Haematology, 2005, 131, 636-644.	2.5	108
12	Common Î ³ -Chain-Dependent Signals Confer Selective Survival of Eosinophils in the Murine Small Intestine. Journal of Immunology, 2009, 183, 5600-5607.	0.8	104
13	The angiogenic factor CCN1 promotes adhesion and migration of circulating CD34+ progenitor cells: potential role in angiogenesis and endothelial regeneration. Blood, 2007, 110, 877-885.	1.4	102
14	Human Endothelial Cells Regulate Survival and Proliferation of Human Mast Cells. Journal of Experimental Medicine, 2000, 192, 801-812.	8.5	101
15	MPL mutations in 23 patients suffering from congenital amegakaryocytic thrombocytopenia: the type of mutation predicts the course of the disease. Human Mutation, 2006, 27, 296-296.	2.5	98
16	Critical role for miR-181a/b-1 in agonist selection of invariant natural killer T cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7407-7412.	7.1	90
17	Identification of a distinct side population of cancer cells in the Cal-51 human breast carcinoma cell line. Molecular and Cellular Biochemistry, 2007, 306, 201-212.	3.1	83
18	The Spectrum of <i>ELANE</i> Mutations and their Implications in Severe Congenital and Cyclic Neutropenia. Human Mutation, 2013, 34, 905-914.	2.5	81

#	Article	IF	CITATIONS
19	Thrombopoietin Is Essential for the Maintenance of Normal Hematopoiesis in Humans. Annals of the New York Academy of Sciences, 2003, 996, 17-25.	3.8	75
20	MECOM-associated syndrome: a heterogeneous inherited bone marrow failure syndrome with amegakaryocytic thrombocytopenia. Blood Advances, 2018, 2, 586-596.	5.2	75
21	Advances in the understanding of congenital amegakaryocytic thrombocytopenia. British Journal of Haematology, 2009, 146, 3-16.	2.5	74
22	Familial thrombocytosis caused by the novel germâ€line mutation p.Pro106Leu in the <i>MPL</i> gene. British Journal of Haematology, 2009, 144, 185-194.	2.5	69
23	HIV Infection Is Associated with a Preferential Decline in Less-Differentiated CD56 ^{dim} CD16 ⁺ NK Cells. Journal of Virology, 2010, 84, 1183-1188.	3.4	68
24	Optimal reprogramming factor stoichiometry increases colony numbers and affects molecular characteristics of murine induced pluripotent stem cells. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2011, 79A, 426-435.	1.5	61
25	Grafting of thrombopoietin-mimetic peptides into cystine knot miniproteins yields high-affinity thrombopoietin antagonists and agonists. FEBS Journal, 2007, 274, 86-95.	4.7	57
26	Mutations in the gene encoding neutrophil elastase (ELA2) are not sufficient to cause the phenotype of congenital neutropenia. British Journal of Haematology, 2001, 115, 222-224.	2.5	54
27	Acute-Phase Protein α1-Antitrypsin Inhibits Neutrophil Calpain I and Induces Random Migration. Molecular Medicine, 2011, 17, 865-874.	4.4	54
28	High Frequencies of Polyfunctional CD8 ⁺ NK Cells in Chronic HIV-1 Infection Are Associated with Slower Disease Progression. Journal of Virology, 2014, 88, 12397-12408.	3.4	52
29	Digenic mutations in severe congenital neutropenia. Haematologica, 2010, 95, 1207-1210.	3.5	51
30	Multiple extrathymic precursors contribute to T-cell development with different kinetics. Blood, 2010, 115, 1137-1144.	1.4	44
31	Thrombopoietin induces the generation of distinct Stat1, Stat3, Stat5a and Stat5b homo- and heterodimeric complexes with different kinetics in human platelets. Experimental Hematology, 2000, 28, 294-304.	0.4	43
32	G-CSF receptor mutations in patients with congenital neutropenia. Current Opinion in Hematology, 2008, 15, 332-337.	2.5	43
33	Haematopoietic stem cells improve cardiac function after infarction without permanent cardiac engraftment. European Journal of Heart Failure, 2005, 7, 722-729.	7.1	41
34	CX3CR1+c-kit+ Bone Marrow Cells Give Rise to CD103+ and CD103â^' Dendritic Cells with Distinct Functional Properties. Journal of Immunology, 2008, 181, 6178-6188.	0.8	41
35	Phenotypically and functionally distinct subsets contribute to the expansion of CD56â^'/CD16+ natural killer cells in HIV infection. Aids, 2010, 24, 1823-1834.	2.2	40
36	Downregulation of c-kit Expression in Human Endothelial Cells by Inflammatory Stimuli. Blood, 1997, 90, 148-155.	1.4	39

#	Article	IF	CITATIONS
37	Loss of CCR7 Expression on CD56bright NK Cells Is Associated with a CD56dimCD16+ NK Cell-Like Phenotype and Correlates with HIV Viral Load. PLoS ONE, 2012, 7, e44820.	2.5	34
38	Implications of Mutations in Hematopoietic Growth Factor Receptor Genes in Congenital Cytopenias. Annals of the New York Academy of Sciences, 2001, 938, 305-321.	3.8	33
39	KAI1/CD82 is a novel target of estrogen receptorâ€mediated gene repression and downregulated in primary human breast cancer. International Journal of Cancer, 2008, 123, 2239-2246.	5.1	33
40	Serum levels of thrombopoietin, IL-11, and IL-6 in pediatric thrombocytopenias. Annals of Hematology, 1999, 78, 401-407.	1.8	32
41	Granulocyte colony-stimulating factor receptor mutations in a patient with acute lymphoblastic leukemia secondary to severe congenital neutropenia. Blood, 2001, 97, 829-830.	1.4	32
42	Comprehensive genetic and functional characterization of IPHâ€926: a novel <i>CDH1</i> â€null tumour cell line from human lobular breast cancer. Journal of Pathology, 2009, 217, 620-632.	4.5	32
43	Retroviral WASP gene transfer into human hematopoietic stem cells reconstitutes the actin cytoskeleton in myeloid progeny cells differentiated in vitro. Experimental Hematology, 2006, 34, 1161-1169.	0.4	30
44	B-CLL developing in a patient with PV is not affected by V617F mutation of the Janus kinase 2. European Journal of Haematology, 2006, 77, 539-541.	2.2	29
45	FcγRIII (CD16)â€mediated ADCC by NKÂcells is regulated by monocytes and FcγRII (CD32). European Journal of Immunology, 2014, 44, 3368-3379.	2.9	29
46	Gene Therapy of Mpl Deficiency: Challenging Balance Between Leukemia and Pancytopenia. Molecular Therapy, 2010, 18, 343-352.	8.2	27
47	Lentiviral gene transfer regenerates hematopoietic stem cells in a mouse model for Mpl-deficient aplastic anemia. Blood, 2011, 117, 3737-3747.	1.4	27
48	Clinic, pathogenic mechanisms and drug testing of two inherited thrombocytopenias, ANKRD26-related Thrombocytopenia and MYH9-related diseases. European Journal of Medical Genetics, 2018, 61, 715-722.	1.3	27
49	Biclonal expansion and heterogeneous lineage involvement in a case of chronic myeloproliferative disease with concurrent MPLW515L/JAK2V617F mutation. Blood, 2009, 113, 1391-1392.	1.4	26
50	Defective c‐Mpl signaling in the syndrome of thrombocytopenia with absent radii. Stem Cells, 1998, 16, 177-184.	3.2	25
51	Upâ€regulation of plateletâ€derived growth factor by peripheralâ€blood leukocytes during experimental allergic encephalomyelitis. Journal of Neuroscience Research, 2008, 86, 392-402.	2.9	23
52	In vivo expansion of cells expressing acquired CSF3R mutations in patients with severe congenital neutropenia. Blood, 2009, 113, 668-670.	1.4	23
53	The Wilms' tumor suppressor Wt1 activates transcription of the erythropoietin receptor in hematopoietic progenitor cells. FASEB Journal, 2008, 22, 2690-2701.	0.5	21
54	Large granular lymphocyte proliferation and revertant mosaicism: two rare events in a Wiskott-Aldrich syndrome patient. Haematologica, 2007, 92, e43-e45.	3.5	20

#	Article	IF	CITATIONS
55	FACS-isolation of Salmonella-infected cells with defined bacterial load from mouse spleen. Journal of Microbiological Methods, 2007, 71, 220-224.	1.6	20
56	CAMT-MPL: congenital amegakaryocytic thrombocytopenia caused by MPL mutations - heterogeneity of a monogenic disorder - a comprehensive analysis of 56 patients. Haematologica, 2021, 106, 2439-2448.	3.5	20
57	Exogenous HIV-1 Vpr disrupts IFN-α response by plasmacytoid dendritic cells (pDCs) and subsequent pDC/NK interplay. Immunology Letters, 2009, 125, 100-104.	2.5	18
58	Detection of Putative Cancer Stem Cells of the Side Population Phenotype in Human Tumor Cell Cultures. Methods in Molecular Biology, 2012, 878, 201-215.	0.9	18
59	Down-regulation of the Fetal Stem Cell Factor SOX17 by H33342. Journal of Biological Chemistry, 2010, 285, 6412-6418.	3.4	17
60	Mutations of the gene <i>FNIP1</i> associated with a syndromic autosomal recessive immunodeficiency with cardiomyopathy and preâ€excitation syndrome. European Journal of Immunology, 2020, 50, 1078-1080.	2.9	17
61	Congenital amegakaryocytic thrombocytopenia (CAMT) presenting as severe pancytopenia in the first month of life. Pediatric Blood and Cancer, 2013, 60, E94-E96.	1.5	16
62	Repertoire characterization and validation of gB-specific human IgGs directly cloned from humanized mice vaccinated with dendritic cells and protected against HCMV. PLoS Pathogens, 2020, 16, e1008560.	4.7	16
63	Concentrations of Thrombopoietin and Interleukin-11 in the Umbilical Cord Blood of Patients with Fetal Alloimmune Thrombocytopenia. American Journal of Perinatology, 2001, 18, 335-344.	1.4	13
64	Familial polycythemia vera with non-germ line JAK2V617F mutation sparing the abnormal and clonal granulopoiesis. Leukemia, 2007, 21, 2566-2568.	7.2	13
65	Thrombopoietin Regulates Differentiation of Rhesus Monkey Embryonic Stem Cells to Hematopoietic Cells. Annals of the New York Academy of Sciences, 2005, 1044, 29-40.	3.8	10
66	Expression pattern of the thrombopoietin receptor (Mpl) in the murine central nervous system. BMC Developmental Biology, 2010, 10, 77.	2.1	10
67	Electroconvulsive therapy, changes in immune cell ratios, and their association with seizure quality and clinical outcome in depressed patients. European Neuropsychopharmacology, 2020, 36, 18-28.	0.7	9
68	Congenital amegakaryocytic thrombocytopenia – Not a single disease. Best Practice and Research in Clinical Haematology, 2021, 34, 101286.	1.7	9
69	MYH9-related disease: Report on five German families and description of a novel mutation. Annals of Hematology, 2010, 89, 1057-1059.	1.8	8
70	Role of Suppressor of Cytokine Signaling-1 In Murine Atherosclerosis. PLoS ONE, 2012, 7, e51608.	2.5	8
71	Multimodal and Multiscale Analysis Reveals Distinct Vascular, Metabolic and Inflammatory Components of the Tissue Response to Limb Ischemia. Theranostics, 2019, 9, 152-166.	10.0	8
72	RAS and CSF3R mutations in severe congenital neutropenia. Blood, 2009, 114, 3504-3505.	1.4	7

#	Article	IF	CITATIONS
73	DNA Methylation of the t-PA Gene Differs Between Various Immune Cell Subtypes Isolated From Depressed Patients Receiving Electroconvulsive Therapy. Frontiers in Psychiatry, 2020, 11, 571.	2.6	7
74	Downregulation of c-kit Expression in Human Endothelial Cells by Inflammatory Stimuli. Blood, 1997, 90, 148-155.	1.4	7
75	Thrombopoietin Acts Synergistically on Ca2+ Mobilization in Platelets Caused by ADP or Thrombin Receptor Agonist Peptide. Biochemical and Biophysical Research Communications, 1999, 263, 230-238.	2.1	6
76	Flow cytometric detection of MPL (CD110) as a diagnostic tool for differentiation of congenital thrombocytopenias. Haematologica, 2015, 100, e341-e344.	3.5	6
77	Deciphering the impact of parameters influencing transgene expression kinetics after repeated cell transduction with integrationâ€deficient retroviral vectors. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2015, 87, 405-418.	1.5	4
78	Polymerization of misfolded Z alpha-1 antitrypsin protein lowers CX3CR1 expression in human PBMCs. ELife, 2021, 10, .	6.0	4
79	Congenital Amegakaryocytic Thrombocytopenia (CAMT): A Detailed Clinical Analysis of 21 Cases Reveals Different Types of CAMT Blood, 2004, 104, 740-740.	1.4	4
80	Thrombopoietin in Patients With Congenital Thrombocytopenia and Absent Radii: Elevated Serum Levels, Normal Receptor Expression, But Defective Reactivity to Thrombopoietin. Blood, 1997, 90, 612-619.	1.4	4
81	Ectopic Expression of the Extracellular Domain of Mpl Is Sufficient to Induce a Hematopoietic Population Crisis. Blood, 2008, 112, 2886-2886.	1.4	4
82	RAS and G-CSF Receptor Mutations Are Mutually Exclusive in Leukemogenesis in Severe Congenital Neutropenia Blood, 2005, 106, 3073-3073.	1.4	2
83	In Vivo Growth Advantage of Cells Expressing Acquired CSF3R Mutations in Patients with Severe Congenital Neutropenia Blood, 2007, 110, 3296-3296.	1.4	1
84	c-mpl Mutations in Congenital Amegakaryocytic Thrombocytopenia: Residual TPO Receptor Activity in Patients of Group CAMT II Blood, 2005, 106, 2157-2157.	1.4	0
85	Serial Analysis of Hematopoietic Progenitors in Mplâ^'/â^' Mice Blood, 2007, 110, 2100-2100.	1.4	Ο
86	Title is missing!. , 2020, 16, e1008560.		0
87	Title is missing!. , 2020, 16, e1008560.		Ο
88	Title is missing!. , 2020, 16, e1008560.		0
89	Title is missing!. , 2020, 16, e1008560.		0
90	Title is missing!. , 2020, 16, e1008560.		0

#	ARTICLE	IF	CITATIONS
91	Title is missing!. , 2020, 16, e1008560.		0
92	Title is missing!. , 2020, 16, e1008560.		0
93	Title is missing!. , 2020, 16, e1008560.		0